New patent on virtual guided-bronchoscopy system to help diagnose lung cancer

October 4, 2012

A team of researchers from the Institute of Industrial and Control Engineering (IOC) of the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) and the Pulmonology Research Group of the Bellvitge Biomedical Research Institute (IDIBELL) has patented an improved virtual bronchoscopy system designed to enhance endoscopic examination of peripheral lung lesions, that is, small nodules located in more distal branches of the bronchi. The system, designed to improve lung cancer diagnosis, aids physician decision making regarding whether a bronchoscopy is necessary and so avoids possible risks and discomfort for the patient.

For standard lung cancer detection procedures, virtual bronchoscopy enables lung lesions to be examined from 3D reconstructions of the tracheobronchial tree. After a radiology exam, the physician can plan the bronchoscopy, which is performed using a flexible bronchoscope. This medical device is used for lung treatment and diagnosis and for the extraction of for biopsy purposes.

The UPC-IDIBELL system, developed from virtual bronchoscopy imaging based on 2D computed tomography scans, enables the pulmonologist to virtually explore a patient's airways and to simulate, using a tactile feedback device, the flexible bronchoscope movements to be made during the real exam. The can thus very realistically plan an access route from the trachea to the peripheral lesion; it will also be possible to determine whether the tip of the bronchoscope will reach the injury, and, if not, to calculate the distance remaining and the biopsy technique to use. During the planning state, reaching the conclusion that pulmonary tissue is not accessible means that a futile exam is avoided.

The novelty of the system is that, unlike current virtual bronchoscopy systems, it takes bronchoscope geometry and kinematic constraints into account. What the researchers have done is design and adapt automated movement planning techniques to map paths from the trachea to peripheral . The tip of the bronchoscope is modelled as a kinematic chain with a mobile base and three degrees of freedom: the curvature of the tip, rotation around the axis, and forward movement.

Explore further: Virtual fly-through bronchoscopy yields real results

Related Stories

Virtual fly-through bronchoscopy yields real results

October 3, 2011
For patients with non-small cell lung cancer (NSCLC) the accurate determination of the lymph node status before therapy is critical to develop an individualized treatment plan. Research from the October issue of the Journal ...

Bronchoscopy can guide effective treatment for refractory asthma

March 22, 2012
(Medical Xpress) -- Using a bronchoscope to visually examine the airways and collect fluid and tissue can help guide effective therapy for difficult-to-treat asthma patients, according to researchers at National Jewish Health. ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.