Research reveals new aspect of platelet behavior in heart attacks: Clots can sense blood flow

October 29, 2012
The microfluidic device the research team used to observe the flow-dependent clotting behavior.

The disease atherosclerosis involves the build up of fatty tissue within arterial walls, creating unstable structures known as plaques. These plaques grow until they burst, rupturing the wall and causing the formation of a blood clot within the artery. These clots also grow until they block blood flow; in the case of the coronary artery, this can cause a heart attack.

New research from the University of Pennsylvania has shown that clots forming under arterial-flow conditions have an unexpected ability to sense the surrounding blood moving over it.  If the flow stops, the clot senses the decrease in flow and this triggers a contraction similar to that of a muscle. The contraction squeezes out water, making the clot denser.

Better understanding of the clotting dynamics that occur in , as opposed to the dynamics at play in closing a wound, could lead to more effective drugs for prevention. 

The research was conducted by graduate student Ryan Muthard and Scott Diamond, professor and chair of the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science. 

Their work was published in the journal Arteriosclerosis, and , which is published by the .

"Researchers have known for decades that blood sitting in a test tube will clot and then contract to squeeze out water," Muthard said.  "Yet clots observed inside injured mouse blood vessels don't display much contractile activity.  We never knew how to reconcile these two studies, until an unexpected observation in the lab."

Using a specially designed microfluidic device, the researchers pulsed fluorescent dye across a clot to investigate how well it blocked bleeding. When they stopped the flow in order to adjust a valve to deliver the dye, the researchers were startled to see that a massive contraction was triggered in the clot. If they delivered the dye without stopping flow, there was no change in the clot properties.

"We think this may be one of the fundamental differences between clots formed inside blood vessels that cause thrombosis and clots formed when blood slowly pools around a leaking blood vessel during a bleeding event," Diamond said. "The flow sensing alters the clot mechanics." 

To investigate this alteration, the researchers used an intracellular fluorescent dye that binds to calcium. They found that when the flow stops, the platelets' calcium levels increase and they become activated. By adding drugs that block ADP and thromboxane, chemicals involved in the clotting process, the researchers were able to prevent this platelet calcium mobilization and stop the contraction.   

Millions of patients already take drugs that target these chemical pathways: P2Y12 inhibitors, such as Plavix, block ADP signaling in platelets, and aspirin blocks platelets' synthesis of thromboxane. This discovery suggests that these drugs may be interfering with contractile mechanisms that are triggered when ADP and thromboxane become elevated, such as when the flow around the clot decreases or stops.  Beyond slowing the growth of clots, these anti-platelet drugs may also be altering the mechanics of the clot by preventing contraction. 

"It is an example of 'quorum sensing' by the platelets in the clots," Diamond said. "The platelets are sensing each other and the prevailing environment. This causes them to release ADP and thromboxane, but it is rapidly diluted away by the surrounding

"However, when the flow over the clot decreases or stops, the ADP and thromboxane levels rapidly build up, and this drives platelet ," Diamond said.

Explore further: Scientists develop large-scale simulation of human blood

More information: atvb.ahajournals.org/content/e … 75-adab-e9be5b4ba202

Related Stories

Scientists develop large-scale simulation of human blood

May 1, 2012
(Medical Xpress) -- Having a virtual copy of a patient’s blood in a computer would be a boon to researchers and doctors. They could examine a simulated heart attack caused by blood clotting in a diseased coronary artery ...

Blood cell breakthrough could help treat heart disease

April 27, 2012
(Phys.org) -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's biggest killer ...

Researchers discover that JAM-A protein keeps blood clots in check

May 3, 2012
those disc-shaped cells circulating in your blood -- rush to the scene, clumping together to plug the leak.

Gelatin-based nanoparticle treatment may be a more effective clot buster

November 14, 2011
A targeted, nanoparticle gelatin-based clot-busting treatment dissolved significantly more blood clots than a currently used drug in an animal study of acute coronary syndrome presented at the American Heart Association's ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.