The screening of thousands of fluorescent molecules has revealed a specific label for neural stem cells

October 24, 2012
In a high-throughput screening of fluorescent molecules, the fluorescent compound CDr3 stained neural stem cells the most brightly and specifically. Credit: 2012 National Academy of Sciences, USA  (inset, pink); © 2012 A*STAR Singapore Bioimaging Consortium (main image)

Neural stem cells are the precursors of cells in the nervous system. As well as being crucial for early development, they are present throughout life, contributing to flexibility and repair of the nervous system. As such, they can be used to study the brain, and may offer new ways of treating neurological disease.

Current techniques for identifying and labeling live neural stem cells use to detect specific cell-surface . Small fluorescent molecules, which are commonly used to visualize the locations and movements of molecules and cells, may offer a more convenient and safer alternative.

Young-Tae Chang at the A*STAR Singapore Bioimaging Consortium and co-workers have now identified a fluorescent compound that specifically labels neural stem cells by binding to an intracellular protein. The molecule, named CDr3, was singled out for its selective labeling of neural stem cells after testing thousands of fluorescent compounds from a 'Diversity Oriented Fluorescence Library', or DOFL.

"A DOFL is a collection of intrinsically fluorescent low compounds which have been synthesized, purified and characterized in our lab," says co-author Seong-Wook Yun. "We have generated more than 10,000 DOFL so far, each with different chemical and biological properties."

The researchers narrowed down the number of potentially useful molecules by assessing how strongly they labeled stem cells, and finally determined that CDr3 stained them the most selectively and brightly (see image). They confirmed the specificity of labeling by incubating CDr3 with different cell types and showing that it only stained neural stem cells. Growing stem cells in the presence of CDr3 also showed that it does not affect their survival or division.

A combination of molecular biology techniques revealed that CDr3 labeled the cells by binding to a neural stem cell-specific protein called FABP7. This is found inside the cell, unlike other labeling targets. "Conventionally, live neural stem cells have been identified by detecting cell surface molecules," explains Yun. "However, these molecules are also highly expressed in other types of cells. FABP7 is a specific intracellular marker of neural stem cells."

Labeling of neural stem cells with CDr3 not only allowed them to be identified, but also to be separated from other types of cells. According to Yun, this is important for practical applications.

"Detection and isolation of live from heterogeneous cell populations is a key technology, not only for basic research but also for the development of cell-based therapeutics and drug development," he says.

Explore further: Under the Microscope #12 - Brain cells from skin cells

More information: Yun, S.-W., Leong, C., Duanting, Z., Tan, Y. L., Lim, L. et al. Neural stem cell specific fluorescent chemical probe binding to FABP7. Proceedings of the National Academy of Sciences 109, 10214–10217 (2012). www.pnas.org/content/109/26/10214

Related Stories

Under the Microscope #12 - Brain cells from skin cells

February 29, 2012
This is a beautiful image of human brain cells, which can now be grown from adult skin cells.

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.