Sphere-templated tissue scaffold is a viable subcutaneous implant

October 14, 2012
Sphere-templated tissue scaffold is a viable subcutaneous implant
Compared with high-density porous polyethylene implant materials, sphere-templated poly (2-hydroxyethyl methacrylate) tissue scaffold stimulates a minimal inflammatory response; supports cellular ingrowth, collagen formation, and neovascularization; and may induce less scar formation, according to an experimental study published online Oct. 8 in the Archives of Facial Plastic Surgery.

(HealthDay)—Compared with high-density porous polyethylene (HDPPE) implant materials, sphere-templated poly (2-hydroxyethyl methacrylate) (poly[HEMA]) tissue scaffold stimulates a minimal inflammatory response; supports cellular ingrowth, collagen formation, and neovascularization; and may induce less scar formation, according to an experimental study published online Oct. 8 in the Archives of Facial Plastic Surgery.

Amit D. Bhrany, M.D., of the University of Washington in Seattle, and colleagues conducted a study involving the subcutaneous implantation of poly(HEMA) and HDPPE disks into the dorsal subcutis of C57BL/6 mice to evaluate their use as .

The researchers found that poly(HEMA) and HDPPE implants resisted extrusion, elicited a minimal inflammatory response, and supported neovascularization. While cellular and collagen ingrowth occurred in both implants, collagen ingrowth was thicker in the HDPPE implant due to the larger porous structure, while poly(HEMA) had much thinner within smaller pores. Within the fibrous ingrowth of the HDPPE and individuals pores of poly(HEMA), blood vessels were observed.

"In conclusion, this study serves as a foundation demonstrating that, as a subcutaneous implant, the sphere-template poly(HEMA) tissue scaffold exhibits good biocompatibility and supports cellular infiltration, collagen formation, and neovascularization," the authors write. "Because of its tightly controlled porous structure, the sphere-templated poly(HEMA) implant also may induce less scar-type healing response than the HDPPE implant."

One author disclosed to Healionics, which has licensed the sphere-templated scaffold technology from the University of Washington.

Explore further: Keep smiling: Collagen matrix promotes gum healing around exposed roots

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Recommended for you

New trial for prosthetic hip joint infection

June 14, 2017

The first ever randomised trial to investigate why some patients develop infections after their hip or knee replacement surgery, and which type of surgical revision treatment is best is being run by the University of Bristol ...

Making prosthetic limbs feel more natural

May 31, 2017

A new surgical technique devised by MIT researchers could allow prosthetic limbs to feel much more like natural limbs. Through coordination of the patient's prosthetic limb, existing nerves, and muscle grafts, amputees would ...

A good night's sleep rests on your spine's biomechanics

May 22, 2017

A three-year study by QUT biomedical researchers in the Paediatric Spine Research Group (PSRG) aims to deepen our understanding of the concepts of comfort by using new techniques to look at how the spine reacts in different ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.