Reducing radiation: Model shows hope for new standards worldwide

October 30, 2012

The University of Ottawa Heart Institute (UOHI) is setting the stage in what could become a revolution in medical imaging in Canada as it announces striking results in radiation reduction for the diagnosis of cardiovascular disease. The announcement comes as UOHI is currently showcasing its expertise at the 2012 Canadian Cardiovascular Congress in Toronto.

As a result of an initiative that combines optimizing test protocols, state-of-the art equipment, and high-tech software, two-thirds of the Ottawa Heart Institute's Nuclear Cardiology patients are currently receiving half the that they would normally get. reduction techniques have been achieved across all types of radiation-based —nuclear, CT and PET. The Heart Institute is one of only a handful of centres in Canada with the in-house expertise to evaluate and clinically apply such advances across these technologies. UOHI is confident that all of its patients will receive lower amounts of radiation, and even less by early next year.

The American Society for Nuclear Cardiology has challenged the nuclear cardiology community to reduce radiation exposure below 9 millisieverts (mSv) by 2014. The techniques being employed at the Heart Institute regularly reduce exposure to 5 mSv, and often much less, putting UOHI well ahead of the game. This figure has not bottomed out as efforts will continue to minimize radiation wherever possible.

"Our clinicians are taking a much more critical look at who they are testing with radioactive methods and making decisions based upon risk and necessity which will only expose patients to radiation who truly need the test," said Dr. Benjamin Chow, Co-Director of Cardiac Radiology at the University of Ottawa Heart Institute. These responsible practices, along with a judicious use of technology, could revolutionize cardiac imaging in Canada."

The benefits of this effort include reduced radiation dosages for patients, greater flexibility for tailoring tests for patients, and, in some cases, reduced demand placed on radioisotopes. For younger patients, for example, radiation exposure poses greater risks because they have more years in which cancer could develop. So minimizing their dosage is a high priority. In the case of older patients whose lives may be threatened by an immediate cardiac condition, the benefit would outweigh the small risk of developing cancer later in life.

UOHI also uses a combination of powerful and effective tools that enable better diagnosis of cardiovascular problems. The cadmium zinc telluride camera system used for nuclear imaging is a significant innovation and was implemented by Dr. Glenn Wells, Medical Physicist in Nuclear Cardiology. The Heart Institute was one of the first centres in the world with this technology in 2009, and it had a major impact on reducing radiation in perfusion SPECT scans, by far the most common cardiac imaging test.

The introduction of PET cameras in the late 1990s, which provide much more detailed imagery with much lower levels of injected isotopes, has also had an impact on reducing . The use of such cameras in Canada is still uncommon but increasing.

Software is another critical part of imaging, turning the scanner data into coherent two- or even three-dimensional pictures of what is found in a patient's body. The Heart Institute has helped commercial developers evaluate and improve new advanced software packages for both PET and SPECT scanners that maintain image quality while using less radioactive isotopes.

Over the years, radiation has become a concern for our society, yet often we do not realize the significant benefit of highly accurate diagnostic techniques which may require very low amounts of medical radiation. "Careful and appropriate selection of the right test for the right patient balancing benefit and risk enables optimal patient care," said Dr. Terrence Ruddy, Director of Nuclear Cardiology, University of Ottawa Heart Institute. Experts at the University of Ottawa Heart Institute have demonstrated the tremendous capabilities of these techniques, and the equally tremendous strides that have been made in applying them responsibly.

Explore further: First report of increased safety using simultaneous techniques for cardiac testing published

Related Stories

First report of increased safety using simultaneous techniques for cardiac testing published

October 19, 2011
Canadian Journal of Cardiology has published a paper on the safety of cardiac imaging methods. This study is important for patients worried about radiation exposure during X-ray based studies of the heart. X-ray based methods ...

Halving the radiation dose in cardiac perfusion imaging is now 'feasible'

May 17, 2011
A reduction by half in the radiation dose to which cardiac patients are exposed during diagnostic perfusion imaging is now "feasible", according to an Israeli study.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.