Fixing a sticky situation

October 23, 2012, University of Dayton

For decades, overtightening has been blamed for the phenomenon that sometimes causes surgical screws and plates used in bone repair to irreversibly fuse together, a complication that can make subsequent removal difficult for the surgeon and traumatic for the patient. But a new study from the University of Dayton Research Institute has demonstrated that proteins naturally present in the human body, and not too much torque, are responsible for the sticking. 

The results of the groundbreaking two-year study will be presented at the 2012 annual meeting of the American Osteopathic Academy of Oct. 25 in Silver Springs, Colo. Researchers believe the discovery will lead to improvements in the way surgical materials are manufactured, as well as fewer complications for surgeons and less trauma for patients if the hardware needs to be removed.

Metal plates and screws have long been used in , and titanium alloy is a popular choice among surgeons because of its biocompatibility, and high strength-to-weight ratio, said senior research scientist Doug Hansen, who led the study at the Research Institute. 

While hardware is often left in place indefinitely, there are times when it must be removed, Hansen said, if it is causing pain or other issues for the patient. Although the  screws are designed to be readily removed from the plates, the parts sometimes become locked together, necessitating more complicated and risky surgery to remove them. 

The prevailing belief has been that a metallurgical phenomenon known as 'galling' is causing the sticking, Hansen said. Galling occurs when titanium alloy comes into contact with the same type of titanium alloy under extreme pressure, causing the pieces to actually fuse together with a physical transfer of metal from one surface to the other.

A bioelectrochemist who has performed extensive research on the adhesive and anti-corrosive properties of shellfish proteins, Hansen suggested that human proteins might be the culprit responsible for the welding of plates and screws. "Proteins are incredibly sticky," he said. 

With support from Grandview Medical Center in Dayton, which provided surgical hardware samples as well as medical technical guidance, Hansen set up tests using plates and screws tightened to the recommendation of the hardware manufacturer. All of the test samples were suspended in fluid; some in a fluid that included the presence of proteins, and other samples in fluid without proteins.

Hansen and his research team checked the samples regularly for signs of sticking or corrosion. At nine months, the samples with proteins present were sticking. 

"We found no evidence of crossthreading and no evidence of galling or corrosion, but the screws still stuck," Hansen said. "A look at the samples under a microscope showed us exactly what we were looking for – protein bridging." 

As the study continued, the researchers learned that the longer the screws remained in the plate, the greater the chance of fusion, adding that none of the samples in fluid free of proteins experienced sticking.

Vivien Fongue, D.O., an orthopedic resident in the Department of Medical Education at Grandview Medical Center, said the results of the study are exciting.

Removing surgical hardware that has seized requires the use of a carbide drill, longer surgery and time under anesthesia, and greater risk for complications, said Fongue, who served as one of the medical technical advisors to the program. 

"If we can better understand what is causing the seizing, then we can be better prepared to deal with it," said Fongue, who will present the results of the study in Colorado.. "That will also allow us to better educate and prepare our patients, and help reduce the risk of complications by shortening surgery time."

Hansen said the preliminary study was so successful that he and Fongue are pursuing additional funding to expand the study using a larger number of samples to increase the reliability of the results.

"Now that we can reproduce the problem in the lab, we have the opportunity to figure out how to fix it," Hansen said. "This information will prove very valuable to the manufacturers of medical devices. The solution may be as simple as using a different surface coating to minimize the adhesions of proteins on the metal surface."

Explore further: More bone grafts, screws tied to less spinal reconstruction stress

Related Stories

More bone grafts, screws tied to less spinal reconstruction stress

June 1, 2012
(HealthDay) -- Increasing the number of bone grafts and screws used for fusing multiple cervical spine segments yields a more stable construct that decreases the stresses at the graft end plate and bone-screw interfaces, ...

Study: One-fifth of spine surgery patients develop PTSD symptoms

September 28, 2012
Nearly 20 percent of people who underwent low back fusion surgery developed post-traumatic stress disorder symptoms associated with that surgery, according to a recent Oregon Health & Science University study published in ...

New method for stronger dental implants

March 1, 2012
Millions of people have bad teeth replaced with implants. Often following the procedure, they are unable to chew food for up to six months, until the implant has become fixated in the bone. Now, for the first time, a drug ...

Molecular imaging pinpoints source of chronic back pain

June 6, 2011
A study introduced at SNM's 58th Annual Meeting shows potential relief for patients who suffer chronic pain after back surgery. A molecular imaging procedure that combines functional and anatomical information about the body ...

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Oct 24, 2012
One might think the body would use the same method which produces a pearl ? Does this 'coating' resemble nacre , the coating produced by an oyster to protect itself from the 'intruder' ?
"The outer layer of pearls and the inside layer of pearl oyster and freshwater pearl mussel shells are made of nacre"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.