Surprise origin for coronary arteries could speed advances in regenerative medicine

November 21, 2012

During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists at Albert Einstein College of Medicine of Yeshiva University. The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.

The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.

Each year, more than one million Americans undergo which includes (CABG). During CABG, doctors remove a portion of a healthy vein, usually from a patient's leg, then bypass diseased areas of the coronary arteries. While the procedure has become routine and is considered relatively safe and long-lasting, the veins used during bypass do not completely mimic the arteries they bypass. They can sometimes re-clog, a process known as restenosis, requiring further procedures. Therefore, the ability to regenerate coronary arteries could usher in a new wave of more effective cardiac care.

Coronary arteries nourish with the nutrients and oxygen it needs for pumping. Heart attacks occur when coronary arteries become blocked, causing heart muscle to die. Recent studies had suggested that during development, the coronary arteries originate from cells of the sinus venosus (a heart cavity that exists only in embryos) or from the (the heart's outermost layer).

In their study, Einstein scientists used a wide variety of research tools to show that the coronary arteries largely arise from cells of the endocardium, the heart's innermost cell layer. In particular, the arteries arise from endocardial cells lining the (the two large chambers of the heart).

"The prevailing wisdom was that endocardial cells are terminally differentiated, meaning they cannot become any other cell type," said study leader Bin Zhou, M.D., Ph.D., associate professor of genetics, of pediatrics, and of medicine at Einstein."But our study shows that one population of endocardial cells is actually responsible for forming the coronary arteries."

More specifically, ventricular endocardial cells develop into progenitor (precursor) cells, which then go on to form the coronary arteries. Dr. Zhou and his colleagues also identified a key signaling pathway involved in transforming the ventricular endocardial cells into coronary artery progenitor cells. Einstein has filed a patent application related to this research. The Nfatc1 cell technology is available for licensing.

The Einstein researchers are now trying to identify all the signaling mechanisms that guide the development of the coronary arteries, with the aim of one day synthesizing healthy coronary arteries to replace diseased ones. "When provided with the right environmental signals, vascular progenitor cells can form functional vessels in a petri dish," said Dr. Zhou. "If we can figure out the critical signals regulating coronary artery differentiation and formation, then perhaps we could coax ventricular endocardial cells to build new coronary arteries that can replace damaged ones—basically duplicating the way that these vessels are formed in the body," said Dr. Zhou.

Explore further: New heart cells increase by 30 percent after stem cell infusion

More information: "Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling." Cell, 2012.

Related Stories

New heart cells increase by 30 percent after stem cell infusion

November 15, 2011
Healthy, new heart cells have been generated by animals with chronic ischemic heart disease after receiving stem cells derived from cardiac biopsies or "cardiospheres," according to research conducted at the University at ...

Noninvasive imaging technique may help kids with heart transplants

July 12, 2012
Cardiologists at Washington University School of Medicine in St. Louis have developed a noninvasive imaging technique that may help determine whether children who have had heart transplants are showing early signs of rejection. ...

Recommended for you

Two studies support intensive blood pressure control for long-term health, quality of life

August 23, 2017
Two studies provide additional support for lowering systolic blood pressure to an intensive goal of 120 mmHg - far below the standard guidelines of 140 mmHg - to reduce the risk of heart disease in high-risk patients with ...

Brain activity may be predictor of stress-related cardiovascular risk

August 23, 2017
The brain may have a distinctive activity pattern during stressful events that predicts bodily reactions, such as rises in blood pressure that increase risk for cardiovascular disease, according to new proof-of-concept research ...

'Shapeshifter' that regulates blood clotting is visually captured for the first time

August 23, 2017
We are normally born with a highly sophisticated array of molecules that act as "sentries," constantly scanning our bodies for injuries such as cuts and bruises. One such molecular sentry, known as von Willebrand factor (VWF), ...

Dramatic new studies into inflammation in the infarcted heart could lead to changes in therapy

August 23, 2017
A medical research collaborative has demonstrated that the response of the human heart to an infarction is very different than previously thought. The study, led by cardiologist Borja Ibáñez and published as two independent ...

New molecule may hold the key to triggering the regeneration and repair of damaged heart cells

August 21, 2017
New research has discovered a potential means to trigger damaged heart cells to self-heal. The discovery could lead to groundbreaking forms of treatment for heart diseases. For the first time, researchers have identified ...

Researchers investigate the potential of spider silk protein for engineering artificial heart

August 18, 2017
Ever more people are suffering from cardiac insufficiency, despite significant advances in preventing and minimising damage to the heart. The main cause of reduced cardiac functionality lies in the irreversible loss of cardiac ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.