Laser-light testing of breast tumor fiber patterns helps show whose cancer is spreading

November 1, 2012

Using advanced microscopes equipped with tissue-penetrating laser light, cancer imaging experts at Johns Hopkins have developed a promising, new way to accurately analyze the distinctive patterns of ultra-thin collagen fibers in breast tumor tissue samples and to help tell if the cancer has spread.

The Johns Hopkins researchers say their crisscrossing optical images, made by shining a laser back and forth across a biopsied tissue sample a few millionths of a meter thick, can potentially be used with other tests to more accurately determine the need for lymph node biopsy and removal in women at risk of metastatic .

In what is believed to be the first study to measure minute changes in tumor connective tissue fibers, researchers found that eight women whose cancers had spread beyond the breast through the body's had about 10 percent more densely packed and radially spread-out collagenous structural proteins than six women whose cancers had not yet spread. Collagen fibers in the non-metastasized tumors, also obtained during breast biopsy, were more diffuse and arranged in a transverse or horizontal pattern. All 14 women in the study had aggressive, malignant breast cancer.

In the new report, to be published in the online Nov. 1, researchers say that if these "proof of principle" findings hold up in testing now under way in hundreds more women with or without metastatic breast cancer, then their new tool could simplify testing for spreading disease and help people avoid unnecessary lymph node surgery.

"Our new has the potential to help reassure thousands of that their cancers have not spread to other organs, and could help them avoid the risks and pain currently involved in direct inspections of lymph nodes for the presence of ," says study senior investigator Kristine Glunde, Ph.D.

Women with denser tumor fiber patterns would likely stand a greater chance of needing lymph node biopsy and removal and inspection of such tissue for malignant cells, says Glunde, an associate professor at the Johns Hopkins University School of Medicine Russell H. Morgan Department of Radiology and the Sidney Kimmel Comprehensive Cancer Center.

Glunde says complications from lymph node biopsy and more invasive dissection include risk of infection, pain, severe swelling and leakage of lymph fluid around the armpit, as well as stiffening in the arm, which can be permanent. An estimated 230,000 Americans were diagnosed in 2011 with invasive breast cancer, while another 57,000 were found to have noninvasive, or in-situ breast cancer.

experts have known for more than a decade that the fibrous connective tissue located between cancer cells changes and bunches together as tumors grow and disease spreads, says study co-investigator Zaver Bhujwalla, Ph.D., a professor at Johns Hopkins and its Kimmel Cancer Center.

"Until now, however, we had no proof in principle that such minute and progressive changes outside cancer cells, in the tumor micro-environment or extracellular matrix, could be measured and potentially used to better guide our staging and treatment decisions," says Bhujwalla, who also serves as director of the Johns Hopkins In Vivo Cellular and Molecular Imaging Center (ICMIC), where the latest imaging study was performed.

It was also at ICMIC in 2010, supported with funds from the U.S. National Cancer Institute (NCI), that Glunde, Bhujwalla and fellow study co-investigator Meiyappan Solaiyappan, B.S., developed the specialized computer software used to analyze the microscopic spaces between tumor collagen fibers and calculate their density.

The tissue fiber images were obtained using an optical imaging technique called second harmonic generation microscopy, in which a long-wavelength laser light is deflected off the for a few seconds, allowing for several planes and fields of view to be captured. The longer infrared wavelength, at 880 micrometers, was chosen because it can penetrate the tissue beyond the colorful light waves visible to the human eye, but does not damage and heat up the cancer cells, as a slightly longer infrared wavelength would. Glunde says the many fields of view were randomly taken throughout the tissue sample, providing a "realistic representation of each breast cancer sample." Breast biopsy samples came from tissue research collections in Maryland.

Explore further: 'Hidden' cancer cells not a factor in early-stage breast cancer survival rates

Related Stories

'Hidden' cancer cells not a factor in early-stage breast cancer survival rates

July 26, 2011
A new study shows that removing lymph nodes due to the presence of occult, or microscopic, cancer cells found in the sentinel lymph node – the one closest to the tumor -- has no impact on survival outcomes of women with ...

How breast cancer spreads: Researchers find key to lymph node metastasis in mice

September 10, 2012
The invasion of cancer cells into the lymph vessels that connect the breast to surrounding lymph nodes is the first step leading to the metastasis, or spread, of cancer throughout the body. Metastasis is the primary cause ...

Researchers find new, noninvasive way to identify lymph node metastasis

January 12, 2012
Using two cell surface markers found to be highly expressed in breast cancer lymph node metastases, researchers at Moffitt Cancer Center, working with colleagues at other institutions, have developed targeted, fluorescent ...

Recommended for you

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.