New mechanism for cancer progression discovered

November 27, 2012, University of North Carolina Health Care

The protein Ras plays an important role in cellular growth control. Researchers have focused on the protein because mutations in its gene are found in more than 30 percent of all cancers, making it the most prevalent human oncogene.

University of North Carolina Lineberger Comprehensive Center and Harvard researchers have discovered an alternative mechanism for activating Ras that does not require mutation or hormonal stimulus. In healthy cells, Ras transmits hormone signals into the cell that prompt responses such as cell growth and the development of organs and tissues. A mutation on the RAS gene can chronically activate those signals, leading to and progression.

In an article published on-line in a November issue of , the UNC and Harvard teams discovered that modification of Ras at a specific site with a small known as ubiquitin can also lock Ras into an active signaling state. Thus, modification of Ras with a single ubiquitin – a process known as monoubiquitination - switches Ras to an active signaling state by disrupting the action of another protein known as the GTPase activating protein, or GAP. Work by two of the papers co-authors, Atsuo Sasaki and Lewis Cantley of Harvard, had previously found evidence for Ras's potential to become activated and promote Ras-mediated by monoubiquitination.

Because of the strong link between Ras and cancer, Ras should be an attractive target for drug discovery efforts. Despite considerable efforts at developing treatments targeting the protein, Ras itself is now considered to be 'undruggable', leading researchers to try new approaches to developing drugs that target activated Ras. This could lead to benefits beyond cancer therapies, as the RAS gene has also been linked to developmental disorders such as , Costello syndrome and autoimmune lymphoproliferative syndrome.

Lead researcher Rachael Baker, a PhD candidate doing joint work in the labs of Henrik Dohlman, PhD, professor of pharmacology and vice chair of biochemistry and biophysics and Sharon Campbell, PhD, professor of biochemistry and biophysics at UNC, developed a novel method to modify Ras with ubiquitin and then subsequently characterized how ubiquitin modification can lead to Ras activation.

The attachment of ubiquitin to Ras at a specific site leads to Ras activation, much like with an oncogenic mutation, leading to an increased potential for cancer formation. Baker notes that the reaction can be reversed by enzymes in the cell that remove ubiquitin, making these enzymes possible targets for future pharmaceutical research.

"Establishing how Ras is activated by ubiquitin is just the first step in understanding this novel mechanism of cellular regulation." said Campbell.

The researchers next step will be to obtain a more detailed understanding of its role in cancer progression, first in cells and in animals and eventually in cancer patients.

Explore further: Researchers develop compound to block signaling of cancer-causing protein

Related Stories

Researchers develop compound to block signaling of cancer-causing protein

July 17, 2011
Researchers at New York University's Department of Chemistry and NYU Langone Medical Center have developed a compound that blocks signaling from a protein implicated in many types of cancer. The compound is described in the ...

New study identifies novel role for PEA-15 protein in cancer growth

November 21, 2011
A new study from the University of Hawaii Cancer Center reveals that PEA-15, a protein previously shown to slow ovarian tumor growth and metastasis, can alternatively enhance tumor formation in kidney cells carrying a mutation ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.