Antibiotics based on a new principle may defeat MRSA

December 18, 2012

(Medical Xpress)—Scientists at Karolinska Institutet in Sweden have presented a new principle for fighting bacterial infections, in other words, a new type of antibiotic, in the FASEB Journal. The new antibiotic mechanism is based on selectively blocking the thioredoxin system in the cells, which is crucial to the growth of certain bacteria. Scientists hope to be able to treat such conditions as stomach ulcers, TB and MRSA.

"Much work remains to be done, but we believe that it will be possible to use this mechanism when, for example, broad-spectrum antibiotics have proved to be inadequate", says Professor Arne Holmgren, leader of the study now being published.

The thioredoxin system is present in all cells and is central to the ability to make new DNA (). It is also important in protecting the cell from a process known as oxidative stress, which arises when excess and other oxidizing agents are formed. This may occur, for example, during the attack by on bacteria, and it can damage or kill the cell. The most important components of the thioredoxin system are the enzymes thioredoxin and thioredoxin reductase, of which the first (very simplified) is required in the process of creating the building of what is to be new DNA, and the second ensures that the thioredoxin remains active.

In addition to the thioredoxin system, and humans, and some bacteria, have a second, similar biochemical process in the cell that is based on the glutaredoxin. The thioredoxin system and the glutaredoxin system act as each other's backup. Many bacteria that cause disease, however, such as (which cause ), the Mycobacterium tuberculosis, and the multiresistant staphylococcus bacterium MRSA, have only the thioredoxin system. These bacteria lack the glutaredoxin system. This makes these bacteria very vulnerable to substances that inhibit thioredoxin and thioredoxin reductase.

"Furthermore, the thioredoxin reductases in bacteria are very different in chemical composition and structure from the human enzyme. And it is just these differences, and the fact that certain bacteria lack the glutaredoxin system, that mean that drugs that affect thioredoxin reductase can be used as . This is what we have discovered", says Arne Holmgren.

The study now being published describes how the scientists have used a drug candidate known as ebselen, which has previously been tested in the treatment of stroke and inflammation. The scientists discovered that ebselen and similar synthetic substances inhibit, among other things, thioredoxin reductase in bacteria. The scientists saw in laboratory experiments how the ebselen killed certain types of bacteria and not others. They were able to modify the genetic properties of Escherichia coli (E. coli), which is normally not susceptible to ebselen, and in this way investigate the mechanisms behind the antibiotic effect. They showed that the bacteria in which the genes in the DNA molecule that code for the glutaredoxin enzyme or the formation of the tripeptide glutathione, which is another important component of the glutaredoxin system, had been switched off were must more susceptible to ebselen than normal.

Bacteria that are resistant to several different types of antibiotic are a serious and extensive problem all over the world. The method of attacking bacteria by preventing the construction of their cell wall, which was discovered when penicillin was discovered at the beginning of the 20th century, is still used, in several variations. It has for this reason long been obvious that science must find new ways of combating diseases caused by bacterial infections. The scientists who have written the article believe that the new antibiotic principle they are presenting may be a part of the solution.

"It is particularly interesting that MRSA and the antibiotic-resistant TB are also susceptible to ebselen and new synthetic substances. And it's worth noting that ebselen is an antioxidant, just as vitamin C is. This means that it protects the host against oxidative stress, and in this way we can kill two birds with one stone", says Arne Holmgren.

More information: Jun Lu, Alexios Vlamis-Gardikas, Karuppasamy Kandasamy, Rong Zhao, Tomas N Gustafsson, Lars Engstrand, Sven Hoffner, Lars Engman, Arne Holmgren, Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione, FASEB Journal, online 17 December 2012, doi:10.1096/fj.12-223305 , Vol. 27 April 2013. http://www.fasebj.org/content/early/2012/12/17/fj.12-223305.abstract

Related Stories

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.