Liver mitochondria improve, increase after chronic alcohol feeding in mice

December 21, 2012 by Alison Trinidad, University of Southern California

(Medical Xpress)—Scientists at the Keck School of Medicine of the University of Southern California (USC) have found evidence that liver mitochondria in mice adapt to become better metabolizers of alcohol and increase in number after chronic exposure, which may raise the potential for free radical damage associated with aging and cancer over time.

The liver is a vital organ, playing a major role in metabolism and detoxification in the body. of alcohol has long been tied to such as fatty liver, alcoholic hepatitis and cirrhosis, but how the substance damages the organ is not fully understood. USC research published in the Dec. 7, 2012, issue of the , a peer-reviewed scientific journal, suggests that mitochondria play an important role in the liver's response to the caused by alcohol intake. If scientists observe the same results in human mitochondria, it could help pinpoint targets for therapy.

"The liver has to adapt quickly to various toxins and drugs to meet the demands we place on the body," said Derick Han, Ph.D., assistant professor of research medicine at the Keck School of Medicine of USC and first author of the study. "We've found that mitochondrial plasticity—the mitochondria's ability to change—is probably central to the liver's response to alcohol intake. This gives us a better understanding of how the liver works and how it adapts to stress."

Mitochondria are cellular organelles that generate most of the cell's energy; they have been implicated in certain neurological disorders and have been tied to aging. The metabolism of oxygen by the mitochondria normally generates reactive , or , which in excess can be highly damaging to cells.

"In the short term, it looks like mitochondria adapt to metabolize alcohol better, but as they increase in number and use more oxygen to help metabolize that alcohol, it could be harmful to the body," Han said.

Han and his team of scientists fed alcohol to mice over four weeks, isolated the liver mitochondria and measured levels of respiration and changes in the mitochondrial structure. They found significant increases in oxygen consumption by mice fed the alcohol in comparison to control mitochondria as early as one week after feeding. Changes were greater and more extensive with higher .

Explore further: Antioxidant may prevent alcohol-induced liver disease

More information: www.jbc.org/content/287/50/42165.abstract

Related Stories

Antioxidant may prevent alcohol-induced liver disease

May 2, 2011
An antioxidant may prevent damage to the liver caused by excessive alcohol, according to new research from the University of Alabama at Birmingham. The findings, published online April 21, 2011, in the journal Hepatology, ...

Modest alcohol intake associated with less inflammation in patients with common liver disease

May 15, 2012
NAFLD (non-alcoholic fatty liver disease) is the most common type of liver disease in the developed world, affecting up to one-third of the US population. NAFLD is often associated with obesity and other parameters of the ...

Frequent moderate drinking of alcohol is associated with a lower risk of fatty liver disease

May 24, 2011
In a large study of men in Japan, the presence of fatty liver disease by ultrasonography showed an inverse ( reduced risk) association with the frequency of moderate alcohol consumption; however, there was some suggestion ...

Scientists identify key protein linked to acute liver failure

September 7, 2011
New research from the Keck School of Medicine of the University of Southern California (USC) may help prevent damage to the liver caused by drugs like acetaminophen and other stressors.

A change of heart: Probing how chronic alcoholism alters cellular signaling of heart muscle

February 23, 2012
Beyond the personal tragedy of chronic alcoholism there is heartbreak in the biological sense, too. Scientists know severe alcoholism stresses the heart and that mitochondria, the cellular energy factories, are especially ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.