What mechanism generates our fingers and toes?

December 14, 2012

Dr. Marie Kmita and her research team at the IRCM contributed to a multidisciplinary research project that identified the mechanism responsible for generating our fingers and toes, and revealed the importance of gene regulation in the transition of fins to limbs during evolution. Their scientific breakthrough is published today in the prestigious scientific journal Science.

By combining with mathematical modeling, the scientists provided experimental evidence supporting a theoretical model for pattern formation known as the Turing mechanism. In 1952, mathematician Alan Turing proposed mathematical equations for pattern formation, which describes how two uniformly-distributed substances, an activator and a repressor, trigger the formation of complex shapes and structures from initially-equivalent cells.

"The Turing model for pattern formation has long remained under debate, mostly due to the lack of experimental data supporting it," explains Dr. Rushikesh Sheth, postdoctoral fellow in Dr. Kmita's laboratory and co-first author of the study. "By studying the role of Hox during limb development, we were able to show, for the first time, that the patterning process that generates our fingers and toes relies on a Turing-like mechanism."

In humans, as in other mammals, the embryo's development is controlled, in part, by "architect" genes known as Hox genes. These genes are essential to the proper positioning of the body's architecture, and define the nature and function of cells that form organs and skeletal elements.

"Our genetic study suggested that Hox genes act as modulators of a Turing-like mechanism, which was further supported by mathematical tests performed by our collaborators, Dr. James Sharpe and his team," adds Dr. Marie Kmita, Director of the Genetics and Development research unit at the IRCM. "Moreover, we showed that drastically reducing the dose of Hox genes in mice transforms fingers into structures reminiscent of the extremities of fish fins. These findings further support the key role of in the transition of fins to limbs during evolution, one of the most important anatomical innovations associated with the transition from aquatic to terrestrial life."

Explore further: From blue whales to earthworms, a common mechanism gives shape to living beings

More information: www.sciencemag.org/content/338/6113/1476

Related Stories

From blue whales to earthworms, a common mechanism gives shape to living beings

October 13, 2011
Why don't our arms grow from the middle of our bodies? The question isn't as trivial as it appears. Vertebrae, limbs, ribs, tailbone ... in only two days, all these elements take their place in the embryo, in the right spot ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
2 / 5 (3) Dec 14, 2012
Looks like we're a bit closer to being able to regenerate lost extremities.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.