MicroRNA-218 targets medulloblastoma, most aggressive childhood brain cancer

December 13, 2012, University of Colorado Denver

Between the blueprint of the genome and the products of its expression lie microRNAs, which can boost or lower the rate at which genes become stuff. In fact, many cancers use microRNA to magnify the expression of faulty genes or shrink the expression of helpful genes that would otherwise suppress tumors. A University of Colorado Cancer Center study published in the December issue of the Journal of Biological Chemistry shows that in medulloblastoma, a malignant brain tumor of children, microRNA-218 is especially low. The article also shows that adding microRNA-218 to neural stem cells engineered to develop medulloblastoma decreases the development of the cancer.

"For the past five years, we've been looking at microRNAs in medulloblastoma, asking how they are normally expressed and how this expression differs in the disease. One of the microRNA's most different in the medulloblastoma is microRNA-218," says Rajeev Vibhakar, MD, PhD, MPH, investigator at the CU Cancer Center, assistant professor of pediatrics at the CU School of Medicine, and the paper's senior author.

When Vibhakar and colleagues inquired into the effects of lower microRNA-218 levels, they found its involvement in pathways that signal the metabolism, growth, migration and invasion of tumor tissues. MicroRNA-218 is a tumor suppressor – low miRNA-218 equals low function in a range of , equals high .

In fact, the group found 618 genes whose expression was manipulated by microRNA-218.

"One of these genes was CDK6," Vibhakar says. Finding a is especially important because whereas it's difficult to drug microRNA it's fairly simple to drug genes. As it turned out, Pfizer already had a drug that targets CDK6 and in a follow-up study published in the Journal of NeuroOncology, when Vibhakar and colleagues tested the drug in medulloblastoma cells, they found reduced cancer cell survival.

"Especially important is the fact that the drug led to increased radiation sensitivity in ," Vibhakar says. "Because medulloblastoma is most common in children and because high doses of radiation in children can have adverse long-term side effects, the prospect of a drug that could reduce the intensity of the required radiation is very appealing."

For similar reasons, despite the finding of a druggable target, the group plans to continue its work with microRNA-218. Specifically, the microRNA seems involved in cancer cell migration and invasion – because medulloblastoma is aggressively metastatic along the spinal cord, any advances in stopping the march of the disease from the brain could lead to major patient gains, especially in pediatric patients.

"Also interesting is the fact that studies of microRNA are leading us to genes implicated in cancer that we may not have discovered otherwise," Vibhakar says. In many ways this is the reverse of the traditional workflow in discovering a druggable target. Usually, a researcher would explore for genetic abnormalities and then if needed search inside the gene's signaling chain for a way to turn it on or off. With microRNA, researchers look first for abnormalities in the signaling chain, and then work higher in the system to discover the associated genetic abnormalities and their functions.

Because many of the pathways affected by microRNA-218 are common across many types of cancer, the findings may have implications far beyond medulloblastoma.

Explore further: Small molecules can starve cancer cells

Related Stories

Small molecules can starve cancer cells

October 9, 2011
All cells in our body have a system that can handle cellular waste and release building blocks for recycling. The underlying mechanism is called autophagy and literally means "self-eating". Many cancer cells have increased ...

Small molecules shed light on cancer therapies

August 22, 2011
Patients suffering from an aggressive brain cancer will benefit from the results of a University of Illinois study that could advance the development of targeted gene therapies and improve prognosis.

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.