Mu-rhythm in the brain: The neural mechanism of speech as an audio-vocal perception-action system

December 5, 2012
Mu-rhythm in the brain: The neural mechanism of speech as an audio-vocal perception-action system

The cortical mechanisms governing speech are not well understood because it is extremely challenging to measure the activity of the brain in action, that is, during speech production. Researchers in Japan have found modulation of mu-rhythms in the cortex related to speech production.

Speech production is one of the most important components in human communication. However, the cortical mechanisms governing speech are not well understood because it is extremely challenging to measure the activity of the brain in action, that is, during speech production.

Now, Takeshi Tamura and Michiteru Kitazaki at Toyohashi University of Technology, Atsuko Gunji and her colleagues at National Institute of Mental Health, Hiroshige Takeichi at RIKEN, and Hiroaki Shigemasu at Kochi University of Technology have found modulation of mu-rhythms in the cortex related to speech production.

Mu-rhythm in the brain: The neural mechanism of speech as an audio-vocal perception-action system
Credit: Michiteru Kitazaki

The researchers measured EEG (electroencephalogram) with pre-amplified electrodes during simulated , simulated vocalization with delayed auditory feedback, simulated vocalization under loud noise, and . The authors define 'mu-rhythm' as a decrease of power in 8-16Hz EEG during the task period.

The mu-rhythm at the sensory-motor cortical area was not only observed under all simulated vocalization conditions, but was also found to be boosted by the delayed feedback and attenuated by loud noises. Since these auditory interferences influence speech production, it supports the premise that audio-vocal monitoring systems play an important role in speech production. The motor-related mu-rhythm is a critical index to clarify of as an audio-vocal perception-action system.

In the future, a neurofeedback method based on monitoring mu-rhythm at the sensory- may facilitate rehabilitation of speech-related deficits.

Explore further: The auditory cortex adapts agilely with concentration

Related Stories

The auditory cortex adapts agilely with concentration

May 24, 2012

The birth of sensory perception on the human cerebral cortex is yet to be fully explained. The different areas on the cortex function in cooperation, and no perception is the outcome of only one area working alone. In his ...

Recommended for you

People match confidence levels to make decisions in groups

May 26, 2017

When trying to make a decision with another person, people tend to match their confidence levels, which can backfire if one person has more expertise than the other, finds a new study led by UCL and University of Oxford researchers.

Optic probes shed light on binge-eating

May 26, 2017

Activating neurons in an area of the brain not previously associated with feeding can produce binge-eating behavior in mice, a new Yale study finds.

Study finds gray matter density increases during adolescence

May 26, 2017

For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

Game study not playing around with PTSD relief

May 26, 2017

Post-traumatic stress disorder (PTSD) patients wrestling with one of its main symptoms may find long-term relief beyond medication thanks to the work of a Western researcher.

Scientists demonstrate the existence of 'social neurons'

May 25, 2017

The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.