How our nerves regulate insulin secretion

December 10, 2012

Researchers at Karolinska Institutet in Sweden have managed to graft beta cells into the eyes of mice in order to study them in a living organism over a prolonged period of time. As a result, the group and a team of colleagues from the University of Miami have gained detailed knowledge of how the autonomic nervous system regulates beta-cell insulin secretion.

The , which is the part of the nervous system beyond , plays an important role in the release of insulin from beta cells in the endocrine part of the pancreas. The process by which this occurs has been a mystery, since it is difficult to give detailed study to such an inaccessible organ. However, researchers at Karolinska Institutet in Sweden have now managed to graft beta cells into the eyes of mice in order to study them in a over a prolonged period of time. As a result, the group and a team of colleagues from the University of Miami have gained detailed knowledge of how the autonomic nervous system regulates beta-cell insulin secretion.

For this study, a technique of transplanting beta cells to the anterior chamber of the mouse eye was used. This technique was previously developed by Professor Per-Olof Berggren's group at Karolinska Institutet. In the anterior chamber of the eye the beta cells receive a supply not only of blood vessels, but also of nerves from the sympathetic and parasympathetic system, which constitute the autonomic nervous system. Put simply, the sympathetic nervous system can be said to prepare us for flight; one way it does this is to boost our energy by reducing and increasing glycogen, and consequently blood glucose. The parasympathetic nervous system operates in the reverse direction when we are at rest.

Now, the teams from Karolinska Institutet and the University of Miami have shown for the first time how the autonomic nervous system controls the beta cells and influences the regulation of blood glucose in living animals.

Using fluorescent markers for different types of nerves in combination with advanced microscopy, the researchers were able to probe the animals' eyes to study in detail the contact between the nerves and the . When the pupil contracted on exposure to light, the animals' blood glucose levels plummeted as a direct result of the stimulation of the . Conversely, when the pupil dilated in darkness and activated the , their blood glucose levels rose. They also managed to influence the animals' blood glucose levels by inhibiting or stimulating each set of nerves with different substances applied directly into the eye.

"We now understand the fundamentals of how works and is affected by the autonomic nervous system," says Per-Olof Berggren. "The next step is to see if it works in the same way in people with diabetes or if there are defects in the signalling relevant to the disease pathogenesis."

Explore further: New research redraws pancreas anatomy

More information: 'Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function', Rayner Rodriguez-Diaz, Stephan Speier, Ruth Damaris Molano, Alexander Formoso, Itai Gans, Midhat H. Abdulreda, Over Cabrera, Judith Molina, Alberto Fachado, Camillo Ricordi, Ingo Leibiger, Antonello Pileggi, Per-Olof Berggren and Alejandro Caicedo, Proceedings of the National Academy of Sciences (PNAS), Online Early Edition 10-14 December 2012.

Related Stories

New research redraws pancreas anatomy

July 6, 2011
(Medical Xpress) -- Research from Karolinska Institutet shows that insulin secretion in the pancreas is not under direct neural control, as has previously been thought. The few nerves that are present are connected to blood ...

New findings on glucagon synthesis

December 3, 2012
Researchers at Karolinska Institutet in Sweden have shown that the cells that produce glucagon are stimulated by the hormone itself. A previous study by the same group demonstrated that this principle also applies to insulin. ...

Connexins: Providing protection to cells destroyed in Type 1 diabetes

November 7, 2011
Type 1 diabetes is a lifelong disease characterized by high levels of sugar (glucose) in the blood. It is caused by the patient's immune system attacking and destroying the cells in their pancreas that produce the hormone ...

Insulin signaling is distorted in pancreases of Type 2 diabetics

December 13, 2011
Insulin signaling is altered in the pancreas, a new study shows for the first time in humans. The errant signals disrupt both the number and quality of beta cells — the cells that produce insulin.

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.