Study paves way to design drugs aimed at multiple protein targets at once

December 12, 2012, University of North Carolina Health Care
This is Brian L. Roth, M.D., Ph.D., Michael J. Hooker Distinguished Professor of Pharmacology in the UNC School of Medicine, professor in the Division of Chemical Biology and Medicinal Chemistry in the UNC Eshelman School of Pharmacy, and director of the National Institute of Mental Health Psychoactive Drug Screening Program. Credit: UNC School of Medicine

An international research collaboration led by scientists at the University of North Carolina School of Medicine and the University of Dundee, in the U.K., have developed a way to efficiently and effectively make designer drugs that hit multiple protein targets at once.

This accomplishment, described in the Dec. 13, 2012 issue of the journal Nature, may prove invaluable for developing drugs to treat many common human diseases such as diabetes, high blood pressure, obesity, cancer, schizophrenia, and bi-polar disorder.

These disorders are called complex diseases because each have a number of genetic and non-genetic influences that determine susceptibility, i.e., whether someone will get the disease or not.

"In terms of the genetics of schizophrenia we know there are likely hundreds of different genes that can influence the risk for disease and, because of that, there's likely no single gene and no one that will be useful for treating it, like other common complex diseases," said study co-leader, Brian L. Roth, MD, PhD, Michael J. Hooker Distinguished Professor of Pharmacology in the UNC School of Medicine, professor in the Division of and in the UNC Eshelman School of Pharmacy, and director of the National Institute of Mental Health Screening Program.

In complex , infectious diseases and cancer, Roth points out that for the past 20 years design has been selectively aimed at a single molecular target, but because these are complex diseases, the drugs are often ineffective and thus many never reach the market.

Moreover, a drug that acts on a single targeted protein may interact with many other proteins. These undesired interactions frequently cause toxicity and adverse effects.

"And so the realization has been that perhaps one way forward is to make drugs that hit collections of drug targets simultaneously. This paper provides a way to do that," Roth said.

The new way involves automated by computer that takes advantage of large databases of drug-target interactions. The latter have been made public through Roth's lab at UNC and through other resources.

Basically, the researchers, also co-led by Andrew L. Hopkins, PhD in the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, at the University of Dundee, in Scotland, used the power of computational chemistry to design drug compounds that were then synthesized by chemists, tested in experimental assays and validated in mouse models of human disease.

The study team experimentally tested 800 drug-target predictions of the computationally designed compounds; of these, 75 percent were confirmed in test-tube (in vitro) experiments.

Drug to target engagement also was confirmed in animal models of human disease. In a mouse model of attention deficit hyperactivity disorder (ADHD), mice missing a particular dopamine receptor engage in recurrent aberrant behaviors similar to what is seen in ADHD: distractibility and novelty seeking. "We created a compound that was predicted to prevent those recurrent behaviors and it worked quite well," Roth said.

The researchers then tested the compound in another mouse model where a particular enzyme for a brain neuropeptide is missing. Distractibility and novelty seeking also are behavioral features in these animals. And the drug had the same effect in those mice.

The new drug design process includes ensuring that compounds enter the brain by crossing the blood-brain barrier. These, too, were tested successfully in live animals.

According to Roth, pharmaceutical company chemists had suggested that the objective of a drug hitting multiple targets simultaneously is impossible and unlikely to succeed. "Here we show how to efficiently and effectively make that can do that."

Explore further: Researchers develop a multi-target approach to treating tumors

Related Stories

Researchers develop a multi-target approach to treating tumors

June 7, 2012
Researchers from Mount Sinai School of Medicine developed a cancer model built in the fruit fly Drosophila, then used it to create a whole new approach to the discovery of cancer treatments. The result is an investigational ...

Cancer's next magic bullet may be magic shotgun

June 15, 2012
A new approach to drug design, pioneered by a group of researchers at the University of California, San Francisco (UCSF) and Mt. Sinai, New York, promises to help identify future drugs to fight cancer and other diseases that ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.