Researchers develop a multi-target approach to treating tumors

June 7, 2012

Researchers from Mount Sinai School of Medicine developed a cancer model built in the fruit fly Drosophila, then used it to create a whole new approach to the discovery of cancer treatments. The result is an investigational compound AD80 that precisely targets multiple cancer genes. Tested in mouse models, the drug proved far more effective and less toxic than standard cancer drugs, which generally focus on a single target. This is the first time that whole-animal screening has been used in a rational, step-wise approach to polypharmacology. The study appears online in the journal Nature.

Conventional design embraces the "one gene, one drug, one disease" philosophy. Polypharmacology focuses on multi-target drugs and has emerged as a new paradigm in . The hope is that AD80—showing unparalleled effectiveness in fly and mouse models—will be tested in Phase I clinical trials.

"We've come up with one drug that hits multiple targets through 'rational polypharmacology,' and our approach represents a new concept we believe will have great success in suppressing tumors," said Ross L. Cagan, Ph.D., Professor and Associate Dean at Mount Sinai School of Medicine, and senior author on the study. "Scientists are beginning to recognize that single-target drugs can be problematic. I believe that, within the next five years, we'll see more drugs entering clinical trials that use rational polypharmacology as the basis of drug discovery."

The study represented an unusual collaboration between fly geneticists and medicinal chemists. Typically, scientists use human tumor cell lines to screen for single target anti-cancer drugs. In this project, Dr. Cagan, along with co-authors Tirtha Das, Ph.D, from Mount Sinai and their collaborators Arvin Dar, PhD and Kevan Shokat, Ph.D. from the University of California, San Francisco, used their fly models to screen a large chemical library for novel drug leads that shrunk the tumors. They then combined classical fly genetic tools with chemical modeling to develop second-generation drugs to better hit specific targets.

"Many successful drugs now in the marketplace have, by chance, wound up hitting several tumor targets, which is probably why they work," said Dr. Cagan. "The intention of our research was to hit multiple targets purposefully. By using fruit fly genetics we identified, step-by-step, the targets we needed. To my knowledge, this has never been done before. It's also a cost effective model and my prediction is there is going to be more emphasis on whole animal polypharmacology approaches in cancer drug research in the future."

For the study, investigators started out with Ret, the kinase that drives the growth of medullary thyroid tumors in people whose Ret has a cancer-activating mutation; a subset of lung cancer patients also have activated Ret. Researchers engineered a cancer form of Ret into . The flies grew tumors wherever Ret was expressed. The investigators then tested dozens of drugs with the goal of curing the tumor.

One challenge is that Ret has many normal cellular roles and shutting it down everywhere in the body would lead to toxicity, a major problem with . "Our goal did not include the assumption that Ret needed to be shut down," said Dr. Cagan. "We wanted to see what worked on the tumors, and then figure out why it worked."

Researchers determined that their lead drug, AD57, suppressed several cancer signals emanating from Ret. These signals include some of the best-known cancer proteins such as Raf, Src, and Tor. Ret itself was not entirely shut down, which suggested to scientists that a patient would experience fewer side effects. The researchers then set out to improve AD57. They manipulated genes in the presence of the original drug hit, a process that had never been done before. As a result, they found that if they lowered the amount of Raf signaling in the presence of AD57, the drug would work even better.

Raf therefore was found to act as a desirable "target." Reducing Tor made AD57 more toxic, so researchers christened Tor an "anti-target," a new concept in drug discovery. Armed with an ideal target/anti-target profile, the Shokat laboratory then developed a derivative of AD57 called AD80.

"When we fed AD80 to the fruit flies, it was like a super drug," said Cagan. "It was remarkable how much AD80 you could give these flies and they didn't mind. This drug wiped the tumors out in a way AD57 or any other drug did not."

Tested in mice models with the same cancer, AD80 performed 500 times better on human cell lines, and far better in mice with very low toxicity, than a cancer drug that the FDA had recently approved for the same cancer type." That drug, vandetanib, is an orphan drug for patients with late-stage medullary thyroid cancer who are not eligible for surgery. Vandetanib was validated in similar fly models from the Cagan laboratory some years earlier.

"We hope that our research will influence the debate between those who favor pursuing drugs that address single vs. multiple tumor targets," said Cagan, who believes the rational polypharmacology model's success in identifying AD80 will prompt scientists and drug companies to pursue broader approaches to attack tumors.

Explore further: Chemo may get boost from cholesterol-related drug

Related Stories

Chemo may get boost from cholesterol-related drug

April 3, 2012
Johns Hopkins investigators are testing a way to use drugs that target a cholesterol pathway to enhance the cancer-killing potential of standard chemotherapy drugs. Their tests, in mouse models of pancreatic cancer, may yield ...

Researchers find surprising role for enzyme in tumor cell division and new drug to combat it

November 13, 2011
Researchers at the University of California, San Diego School of Medicine and the UC San Diego Moores Cancer Center have identified a new drug discovery approach enabling the destruction of the most highly proliferative tumors. ...

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

The right combination: Overcoming drug resistance in cancer

June 1, 2012
Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

Researchers discover how some breast cancers alter their sensitivity to estrogen

July 27, 2011
Using human breast cancer cells and the protein that causes fireflies to glow, a Johns Hopkins team has shed light on why some breast cancer cells become resistant to the anticancer effects of the drug tamoxifen. The key ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.