'Smart' genes put us at risk of mental illness

December 5, 2012, University of Nottingham
'Smart' genes put us at risk of mental illness

(Medical Xpress)—Humans may be endowed with the ability to perform complex forms of learning, attention and function but the evolutionary process that led to this has put us at risk of mental illness.

Data from new research, published today in the journal Nature Neuroscience, was analysed by Dr Richard Emes, a bioinformatics expert from the School of Veterinary Medicine and Science at The University of Nottingham. The results showed that disease-causing mutations occur in the genes that evolved to make us smarter than our fellow animals.

Dr Emes, Director of The University of Nottingham's Advanced Data Analysis Centre, conducted an analysis of the of the Discs Large homolog (Dlg) family of genes which make some of the essential building blocks of the synapse—the connection between in the brain. He said: "This study highlights the importance of the synapse proteome—the proteins involved in the brains signalling processes—in the understanding of cognition and the power of comparative studies to investigate human disease."

The study involved scientists from The University of Edinburgh, The Wellcome Trust Sanger Institute, the University of Aberdeen, The University of Nottingham and the University of Cambridge.

This cross-disciplinary team of experts carried out what they believe to be the first genetic dissection of the vertebrate's ability to perform complex forms of learning, attention and function. They focussed on Dlg—a family of genes that humans shared with the ancestor of all backboned animals some 550 million years ago. like the Dlgs arose by duplication of DNA, changed by mutation over millions of years and now contribute to the complex we have today. However, this redundancy and subsequent accumulation of changes in the DNA may have led to increased susceptibility to some diseases.

Components of the human cognitive repertoire are routinely assessed by using computerised touch-screen methods. By using the same technique with mice researchers were able to probe the cognitive mechanisms conserved since humans and mice shared a common ancestor—around 100 million years ago. By comparing the effect of DNA changes on behavioural test outcomes this research showed a common cause of mutation and effect of learning changes in both mice and humans.

Dr Emes said: "This research shows the importance of discerning information from data and how the power of computational research combined with behavioural and cognitive studies can provide such novel insight into the basis of clinical disorders. This research provides continued support that discovery occurs at the boundary of disciplines by the integration of data."

This latest research continues earlier work by the Genes to Cognition Consortium in the same journal (Emes et al Nature Neuroscience 2008 doi:10.1038/nn.2135) where the evolutionary origin and history of the collection of proteins forming the synapse were first explored.

Explore further: Origin of intelligence, mental illness linked to ancient genetic accident

Related Stories

Origin of intelligence, mental illness linked to ancient genetic accident

December 2, 2012
Scientists have discovered for the first time how humans – and other mammals – have evolved to have intelligence.

Study illuminates roles of novel epigenetic chemical in the brain

September 17, 2012
Researchers from the Centre for Addiction and Mental Health (CAMH) have identified a new role of a chemical involved in controlling the genes underlying memory and learning.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.