Researchers uncover toxic interaction in neurons that leads to dementia and ALS

December 10, 2012

Researchers at Mayo Clinic in Florida have uncovered a toxic cellular process by which a protein that maintains the health of neurons becomes deficient and can lead to dementia. The findings shed new light on the link between culprits implicated in two devastating neurological diseases: and amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The study is published Dec. 10 in the online issue of Proceedings of the National Academy of Sciences.

There is no cure for frontotemporal dementia, a disorder that affects personality, behavior and language and is second only to Alzheimer's disease as the most common form of early-onset dementia. While much research is devoted to understanding the role of each defective protein in these diseases, the team at took a new approach to examine the interplay between TDP-43, a protein that regulates messenger ribonucleic acid (mRNA)— that carry the information of genes and are used by cells to guide —and sortilin, which regulates the protein progranulin.

"We sought to investigate how TDP-43 regulates the levels of the protein progranulin, given that extreme progranulin levels at either end of the spectrum, too low or too high, can respectively lead to or cancer," says the study's lead investigator, Mercedes Prudencio, Ph.D., a neuroscientist at the Mayo Clinic campus in Florida.

The neuroscientists found that a lack of the protein TDP-43, long implicated in frontotemporal dementia and amyotrophic lateral sclerosis, leads to elevated levels of defective sortilin mRNA. The research team is the first to identify significantly elevated levels of the defective sortilin mRNA in autopsied human brain tissue of frontotemporal dementia/TDP cases, the most common subtype of the disease.

"We found a lack of TDP-43 disrupts the cellular process called mRNA splicing that precedes protein synthesis, resulting in the generation of a defective sortilin protein," Dr. Prudencio says. "More important, the defective sortilin binds to progranulin and as a result deprives neurons of progranulin's protective effects that stave off the cell death associated with disease."

By improving the scientific community's understanding of the biological processes leading to frontotemporal dementia, the researchers have also paved the way for the development of new therapies to prevent or combat the disease, says Leonard Petrucelli, Ph.D., chair of the Department of Neuroscience at Mayo Clinic in Florida, who led the research.

Explore further: Researchers find chemical 'switches' for neurodegenerative diseases

Related Stories

Researchers find chemical 'switches' for neurodegenerative diseases

November 27, 2012
By using a model, researchers at the University of Montreal have identified and "switched off" a chemical chain that causes neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis and dementia. ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Dec 11, 2012
Glucose is required for neuronal survival. TDP-43 facilitates microRNA (miRNA) biogenesis that is required for neuronal outgrowth. If TDP-43 alters glucose-dependent miRNA / messenger RNA balance, which helps to ensure intracellular homeostasis in gonadotropin releasing hormone (GnRH) neurosecretory neurons of mammalian brain tissue, results reported here support the study of glucose and post-transcriptional regulation of miRNA expression in both the nucleus and the cytoplasm.

The involvement of progranulin in hypothalamic glucose-sensing and the involvement of TDP-43 in dysregulation of progranulin, which protects against cell death associated with disease, suggests that what ALS and dementia have in common with other neurodegenerative diseases is that they are all linked via glucose uptake to the microRNA / messenger RNA balance and intermolecular changes in DNA that enable or suppress de novo gene creation of olfactory receptor genes and hippocampal neurogenesis.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.