A step toward repairing the central nervous system

January 29, 2013
A step towards repairing the central nervous system
Neuronal cells cultures through a confocal microscope. The cytoskeleton is stained red, the nuclei blue and proliferative nuclei green.

Despite recent advances in understanding the mechanisms of nerve injury, tissue-engineering solutions for repairing damage in the central nervous system (CNS) remain elusive, owing to the crucial and complex role played by the neural stem cell (NSC) niche. This zone, in which stem cells are retained after embryonic development for the production of new cells, exerts a tight control over many crucial tasks such as growth promotion and the recreation of essential biochemical and physical cues for neural cell differentiation.

According to the first author of the paper, Zaida Álvarez, from the Group on Biomaterials for Regenerative Therapies of the Institute for Bioengineering of Catalonia (IBEC), "in order to develop tissue-engineering strategies to repair damage to the CNS, it is essential to design biomaterials that closely mimic the NSC niche and its physical and biochemical characteristics".

In the study headed by Soledad Alcántara of the University of Barcelona, the team tested types of polylactic acid (PLA) with different proportions of isomers L and D/L, a allowing neural cell adhesion and growth, as materials for . They found that one type, PLA with a proportion of isomers of 70/30, maintained the important pools of neuronal and glial progenitor cells in vitro. PLA 70/30 was more amorphous, degraded faster and, crucially, released significant amounts of L-lactate, which is essential for the maintenance and differentiation of neural progenitor cells. "The aim of the research was to find a biomaterial able to sustain the population of and to generate new differentiated cells in order to start the development of an implant that allows brain regeneration," explains Dr Alcántara.

"The mechanical and surface properties of PLA70/30, which we used here in the form of microthin films, make it a good substrate for neural cell adhesion, proliferation and differentiation," adds Álvarez. "The physical properties of this material and the release of L-lactate when it degrades, which provides an alternative oxidative substrate for neural cells, act synergistically to modulate progenitor phenotypes", concludes the researcher.

The results suggest that the introduction of 3D patterns mimicking the architecture of the embryonic NSC niches on PLA70/30-based scaffolds may be a good starting point for the design of brain-implantable devices. "These will be able to induce or activate existing to self-renew and produce new neurons, boosting the CNS regenerative response in situ," states Álvarez.

Enabling the CNS to regenerate could open doors to promising new strategies to tackle accidental damage as well as numerous diseases like stroke and degenerative disorders such as Parkinson's and Alzheimer's diseases.

Explore further: Growing up as a neural stem cell: The importance of clinging together and then letting go

More information: Alvarez, Z. et al. (March 2013). The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche. Biomaterials 34, 9, 2221–2233.

Related Stories

Growing up as a neural stem cell: The importance of clinging together and then letting go

April 25, 2012
Can one feel too attached? Does one need to let go to mature? Neural stem cells have this problem, too.

Wnt signaling pathway plays key role in adult nerve cell generation: study

September 10, 2012
Researchers from the University of Utah have gained new insight into the regulation of adult nerve cell generation in the hypothalamus, the part of the brain that regulates many aspects of behavior, mood, and metabolism. ...

Signal explains why site of origin affects fate of postnatal neural stem cells

July 27, 2011
New research may help to explain why the location of postnatal neural stem cells in the brain determines the type of new neurons that are generated. The research, published by Cell Press in the July 28 issue of the journal ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.