3-D biomimetic scaffolds support regeneration of complex tissues from stem cells

January 10, 2013
©2013, Mary Ann Liebert Inc., publishers

Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often grow in a specific pattern or alignment. An innovative method for creating a stretched polymer scaffold that can support complex tissue architectures is described in an article in Tissue Engineering, Part C, Methods.

Zu-yong Wang and a team of researchers from National University of Singapore, Nanyang Technological University, KK Women's and Children's Hospital, and Duke-NUS Graduate Medical School, in Singapore, developed a reproducible method that involves stretching a polymer thin film to produce scaffolds that can support the growth of human . The stretching process creates orientated 3-dimensional micro-grooves on the surface of the films, and these formations promote consistent alignment and elongation of stem cells as they grow and develop into tissues on and around the resorbable scaffold.

The authors present their work in the article, "Biomimetic 3D anisotropic geometries by uniaxial stretch of poly(ɛ-caprolactone) films for mesenchymal stem cell proliferation, alignment and myogenic differentiation."

"The researchers developed a very elegant method to promote ," says John Jansen, DDS, PhD, Methods Co-Editor-in-Chief and Professor and Chairman, Department of Biomaterials, Radboud University Nijmegen Medical Center, The Netherlands.

Explore further: New method for creating long-lived stem cells used for bone replacement

Related Stories

Extracting stem cells from fat for tissue regeneration

May 3, 2011

Stem cells extracted from body fat may pave the way for the development of new regenerative therapies including soft tissue reconstruction following tumor removal or breast mastectomy surgery, the development of tissue-engineered ...

Recommended for you

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Mouse teeth providing new insights into tissue regeneration

April 27, 2017

Researchers hope to one day use stem cells to heal burns, patch damaged heart tissue, even grow kidneys and other transplantable organs from scratch. This dream edges closer to reality every year, but one of the enduring ...

Dentistry research ID's novel marker for left-handedness

April 27, 2017

Individuals with a slender lower face are about 25 percent more likely to be left-handed. This unexpected finding was identified in 13,536 individuals who participated in three national surveys conducted in the United States.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.