3-D biomimetic scaffolds support regeneration of complex tissues from stem cells

January 10, 2013, Mary Ann Liebert, Inc
©2013, Mary Ann Liebert Inc., publishers

Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often grow in a specific pattern or alignment. An innovative method for creating a stretched polymer scaffold that can support complex tissue architectures is described in an article in Tissue Engineering, Part C, Methods.

Zu-yong Wang and a team of researchers from National University of Singapore, Nanyang Technological University, KK Women's and Children's Hospital, and Duke-NUS Graduate Medical School, in Singapore, developed a reproducible method that involves stretching a polymer thin film to produce scaffolds that can support the growth of human . The stretching process creates orientated 3-dimensional micro-grooves on the surface of the films, and these formations promote consistent alignment and elongation of stem cells as they grow and develop into tissues on and around the resorbable scaffold.

The authors present their work in the article, "Biomimetic 3D anisotropic geometries by uniaxial stretch of poly(ɛ-caprolactone) films for mesenchymal stem cell proliferation, alignment and myogenic differentiation."

"The researchers developed a very elegant method to promote ," says John Jansen, DDS, PhD, Methods Co-Editor-in-Chief and Professor and Chairman, Department of Biomaterials, Radboud University Nijmegen Medical Center, The Netherlands.

Explore further: New method for creating long-lived stem cells used for bone replacement

Related Stories

New method for creating long-lived stem cells used for bone replacement

December 4, 2012
Human mesenchymal stem cells (hMSCs) can develop into bone cells and are useful for tissue engineering and regeneration. However, when grown in the laboratory they quickly lose their ability to continue dividing and they ...

Extracting stem cells from fat for tissue regeneration

May 3, 2011
Stem cells extracted from body fat may pave the way for the development of new regenerative therapies including soft tissue reconstruction following tumor removal or breast mastectomy surgery, the development of tissue-engineered ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.