Researchers find gene that turns up effect of chemotherapy

January 29, 2013

Chemotherapy is one of the most common treatments for cancer patients. However, many patients suffer from serious side-effects and a large proportion does not respond to the treatment. Researchers from the Biotech Research and Innovation Centre (BRIC) and Center for Healthy Aging, University of Copenhagen, now show that the gene FBH1 helps turn up the effect of chemotherapy.

"Our results show that the gene FBH1 is crucial in order for some chemotherapeutics to become active in the body and kill the . If we can find a feasible method to increase the activity of the gene, we can use our cells' own resources to improve , says associate professor Claus Sørensen who has lead the team of researchers behind the results.

Own gene helps chemotherapy fight cancer

The researchers have used a method called to study whether some of the genes in our DNA are important for cancer cells to react to certain chemotherapeutics. "By using the method to remove single genes from cancer cells and then exposing the cells to chemotherapy, we found that FBH1 is important for the effect of the chemotherapy. Actually, the presence of the gene was an absolutely requirement in order to effectively kill the cancer cells with the type of chemotherapeutics we have studied, says postdoc Kasper Fugger who has led the experimental part of the investigation.

Chemotherapy act by exposing cancer cells to a kind of when they divide. The result is detrimental damage to the cells' DNA that cannot be repaired, causing the cells to die. The new results show that it is in fact FBH1 that contributes to the formation of when treating with chemotherapy and this knowledge can be used to optimize .

Selection of patients for chemotherapy

In the last decade it has become clear that targeted treatment to individual is crucial for an effective treatment with least possible side-effects. By assessing the presence of FBH1 in a tumour the doctors can get an indication of whether the patient will benefit from chemotherapy.

"Our results could help indicate that patients with low or no FBH1 in the cancer cells will not benefit from certain types of chemotherapy, but should be administered another type of treatment. So by using the genetic fingerprint of a tumour doctors can adjust the treatment to individual patients, says Claus Sørensen.

The next step - finding the FBH1 volume knob

The next step for the research team is to investigate the presence of changes, so-called mutations in FBH1. Identifying mutations rendering cancer cells resistant to certain can be used to target the treatment even better to individual patients. Another goal for the researchers is to find a way to turn up the activity of FBH1 in cancer cells.

"Our hope is to find a method to boost the activity of the FBH1 gene in cancer cells since this will make them more sensitive to chemotherapy. Alternatively, we may find a way to simulate an effect similar to that of FBH1, which can be used as additional treatment in order to sensitise cancer cells to chemotherapy. If we achieve this, more patients will benefit from the treatment, says Kasper Fugger.

Explore further: Genetic predictor of breast cancer response to chemotherapy

More information: FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress, Kasper Fugger, Wai Kit Chu, Peter Haahr, Arne Nedergaard Kousholt, Halfdan Beck, Miranda J. Payne, Katsuhiro Hanada, Ian D. Hickson, Claus Storgaard Sørensen; Nature Coomunications, January 29, 2013.

Related Stories

Genetic predictor of breast cancer response to chemotherapy

May 10, 2012
Chemotherapy is a major first line defense against breast cancer. However a patient's response is often variable and unpredictable. A study published in BioMed Central's open access journal BMC Medical Genomics shows that ...

Gene-modified stem cells help protect bone marrow from toxic side effects of chemotherapy

May 21, 2011
Although chemotherapy is used to kill cancer cells, it can also have a strong toxic effect on normal cells such as bone marrow and blood cells, often limiting the ability to use and manage the chemotherapy treatment. Researchers ...

Some breast cancer tumors may be resistant to a common chemotherapy treatment

March 27, 2012
Some breast cancer tumours may be resistant to a common chemotherapy treatment, suggests recent medical research at the University of Alberta.

Gene helps predict which ovarian cancer sufferers will benefit most from chemotherapy

September 19, 2012
(Medical Xpress)—Researchers from the University of Dundee have discovered that measuring how active a gene is could predict which women with ovarian cancer will benefit from platinum-based chemotherapy drugs - a common ...

Researchers investigate drug resistant ovarian cancer to improve clinical treatment

August 9, 2012
(Medical Xpress) -- A new study by TCD researchers investigates drug-resistant ovarian cancer cells. The findings which have been recently published in the international publication, PLoS One will increase understanding of ...

Ovarian cancer stem cells targeted in new research

October 5, 2012
Ovarian cancer takes the lives of nearly 900 Australian women each year. It's called the silent killer because by the time most cases are detected, the cancer has spread to other vital organs throughout the abdominal area.

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.