Study offers new insights into the mechanics of muscle fatigue

January 17, 2013, Rockefeller University

A study in The Journal of General Physiology examines the consequences of muscle activity with surprising results, indicating that the extracellular accumulation of potassium that occurs in working muscles is considerably higher than previously thought.

Muscle excitation involves the influx of and efflux of . Although the fraction of ions that cross the muscle membrane with each contraction is minute, repeated activity can lead to substantial changes in the intracellular and extracellular concentrations of sodium and potassium ions. The extent of these changes, however, has been unclear. Now, Torben Clausen from Aarhus University in Denmark provides quantitative analyses of the changes in intracellular and extracellular ion concentration resulting from stimulation of a leg muscle in rats, providing insight into how they vary with muscle activity.

Clausen measured the changes in concentration of sodium, potassium, and in working rat extensor digitorum longus (ESL) muscles. Remarkably, when their muscles were stimulated to fire at a rate of 5 Hz (comparable to that in the legs of a person riding a bicycle) for five minutes, sufficient intracellular potassium was lost to lead to an extracellular concentration that would interfere with further excitation. These results suggest that accumulation of extracellular potassium is a much larger contributor to than previously thought, which may be of particular importance in such conditions as hyperkalemic and other channelopathies that affect skeletal muscle. These changes in ion distribution are opposed through the action of the "Na+/K+ pump"—which expends energy to move sodium out of the cell and potassium into it—and will therefore be even more pronounced under disease- and injury-related conditions associated with decreased pump activity.

Explore further: Neuroscientists' discovery could bring relief to epilepsy sufferers

More information: Clausen, T., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210892

Related Stories

Neuroscientists' discovery could bring relief to epilepsy sufferers

June 21, 2011
Researchers at the University of California, Riverside have made a discovery in the lab that could help drug manufacturers develop new antiepileptic drugs and explore novel strategies for treating seizures associated with ...

Study finds new pathway critical to heart arrhythmia

October 26, 2011
University of Maryland School of Medicine researchers have uncovered a previously unknown molecular pathway that is critical to understanding cardiac arrhythmia and other heart muscle problems. Understanding the basic science ...

Recommended for you

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.