Arrhythmia culprit caught in action

February 17, 2013, University of British Columbia

Using powerful X-rays, University of British Columbia researchers have reconstructed a crime scene too small for any microscope to observe – and caught the culprit of arrhythmia in action.

Characterized by the heart beating too fast, too slow or inconsistently, arrhythmias may cause a decrease of blood flow to the brain and body, resulting in heart palpitation, dizziness, fainting, or even death.

Presented today at the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, the 3D animated model reveals for the first time how gene mutations affect the crucial pathway in that controls its rhythm.

"Our heart runs on calcium," says UBC molecular biologist Filip Van Petegem. "Every is preceded by rushing into heart muscle cells."

"Then, a special protein opens the pathway for calcium to be released from compartments within these cells, and in turn initiates the contraction."

Mutations to the gene that forms this protein have been linked to arrhythmia and sudden cardiac deaths in otherwise healthy people.

"Reconstructing the pathway and its dynamic motion enabled us to see the process in action," says Van Petegem. "We found that the mutations destabilize the pathway's structure, causing calcium to be released prematurely.

"Finding a way to stabilize the pathway could prevent these deadly conditions and save lives."

Explore further: Researchers illuminate link between sodium, calcium and heartbeat

Related Stories

Researchers illuminate link between sodium, calcium and heartbeat

February 13, 2012
Using the Canadian Light Source synchrotron, researchers from the University of British Columbia have revealed, for the first time, one of the molecular mechanisms that regulates the beating of heart cells by controlling ...

Genetic variant increases risk of heart rhythm dysfunction, sudden death

May 30, 2012
Cardiovascular researchers at the University of Cincinnati (UC) have identified a genetic variant in a cardiac protein that can be linked to heart rhythm dysfunction.

Discovery could improve screening for sudden cardiac death

December 12, 2012
Unfortunately, newspaper articles about young athletes dying suddenly on the field are not unheard of. Such reports fuel discussions about compulsory screening, for example of young footballers, for heart failure. Research ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.