Biomarker may identify neuroblastomas with sensitivity to BET bromodomain inhibitors

February 21, 2013

Neuroblastoma, the most common malignant tumor of early childhood, is frequently associated with the presence of MYCN amplification, a genetic biomarker associated with poor prognosis. Researchers have determined that tumors containing MYCN amplification are sensitive to a new class of drugs, BET bromodomain inhibitors.

The researchers made this discovery in a preclinical study, which was funded in part by a Stand Up To Cancer Innovative Research Grant and was published in Cancer Discovery, a journal of the American Association for Cancer Research.

"BET bromodomain inhibitors are a class of drugs that many researchers are hopeful may offer a new for treating patients with certain cancers," said Kimberly Stegmaier, M.D., assistant professor of pediatrics in the Department of Hematology/Oncology at Dana-Farber/Children's Hospital Cancer Center in Boston, Mass. "The challenge has been identifying that can help direct clinical translation of these drugs by pinpointing those patients with the highest likelihood of response."

To identify genetic biomarkers of responsiveness to BET bromodomain inhibitors, Stegmaier and colleagues screened more than 600 cancer cell lines with known for sensitivity to a prototypical BET bromodomain inhibitor.

Using this high-throughput, cell-based screening process, the researchers found that in which the MYCN gene was amplified were sensitive to BET bromodomain inhibitors.

"Neuroblastoma is a devastating childhood cancer, and only a minority of children with high-risk disease will be cured with currently available treatments," Stegmaier said. "Prior research has shown that MYCN amplification is common in neuroblastoma, but it has been an elusive ."

To further validate their findings, the researchers tested a BET bromodomain inhibitor, from the laboratory of James E. Bradner, M.D., at the Dana-Farber Cancer Institute, using cultured MYCN-amplified neuroblastoma cell lines and three animal models of MYCN-amplified neuroblastoma. Together, they found that the drug decreased levels of MYCN protein in cultured cells, and that this led to impaired cell growth and cell death. In each animal model, including a mouse model of neuroblastoma that is known to be resistant to many standard therapies, the drug was shown to have anti-tumor effects and to prolong survival.

"My Stand Up To Cancer grant, which focused on modulating difficult drug targets in childhood cancers, was instrumental to us being able to do this exciting work," Stegmaier said. "These types of studies are generally considered high-risk, particularly because they start with unbiased screening, and they are generally less likely to be supported by traditional sources of funding."

Explore further: Scientists develop new strategy to overcome drug-resistant childhood cancer

Related Stories

Scientists develop new strategy to overcome drug-resistant childhood cancer

July 11, 2012
A new drug combination could offer hope to children with neuroblastoma – one of the deadliest forms of childhood cancer – by boosting the effectiveness of a promising new gene-targeted treatment.

Recommended for you

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.