Biostatisticians identify genes linked to heart disease

February 6, 2013

Recently, large studies have identified some of the genetic basis for important common diseases such as heart disease and diabetes, but most of the genetic contribution to them remains undiscovered. Now researchers at the University of Massachusetts Amherst led by biostatistician Andrea Foulkes have applied sophisticated statistical tools to existing large databases to reveal substantial new information about genes that cause such conditions as high cholesterol linked to heart disease.

Foulkes says, "This new approach to data analysis provides opportunities for developing new treatments. It also advances approaches to identifying people at greatest risk for heart disease. Another important point is that our method is straightforward to use with freely available computer software and can be applied broadly to advance genetic knowledge of many diseases. We hope this moves us toward greater understanding of common disorders and improving overall health in our society."

The new analytical approach she developed with cardiologist Dr. Muredach Reilly at the University of Pennsylvania and others is called "Mixed modeling of P-values" or MixMAP. Because it makes use of existing public databases, the powerful new method represents a low-cost tool for investigators.

Foulkes, who directs the Institute for , and Bioinformatics at UMass Amherst, explains that MixMAP draws on a principled statistical modeling framework and the vast array of summary data now available from genetic association studies to formally test at a new, locus-level, association. Other members of the team at UMass Amherst are Rongheng Lin, an assistant professor, and postdoctoral researchers Gregory Matthews and Ujwall Das.

The new method, which is generalizable to other problems, takes into account the structure of the genome, Foulkes explains. In genetic epidemiology, traditional genome-wide association studies look at common genetic variations in a group of people with a disease compared to healthy controls, focusing on single-nucleotide polymorphisms (SNP) to see if any single variant is associated with that disease. If one variant is found more often in people with the disease, the SNP is thought to be associated with it.

While that traditional statistical method looks for one unusual "needle in a haystack" as a possible disease signal, Foulkes and colleagues' new method uses knowledge of DNA regions in the genome that are likely to contain several genetic signals for disease variation clumped together in one region. Thus, it is able to detect groups of unusual variants rather than just single SNPs, offering a way to "call out" gene regions that have a consistent signal above normal variation.

Foulkes offers a non-technical analogy, "It's like listening to an orchestra. If there is one drum, we all hear it, and we hear the cello section even if each instrument is playing quietly, because they are all playing together. Current statistical methods can hear the drum, but not the cellos, no matter how many are playing, because no single cello is as loud as the drum. Our method can do this, which adds considerable statistical strength to our ability to identify new genes that may be associated with disease."

Reilly points out that as a complementary strategy to traditional methods, MixMAP will be of great interest to the statistical and cardiovascular genomics community. It can be applied to existing genetic studies of blood cholesterol levels and it already suggests a dozen new genes to explore further for an important risk factor: Low density lipoprotein cholesterol.

Foulkes characterizes the new technique as discovery science still in need of validation, but it's discovery science that goes farther than usual by using sophisticated modeling approaches to quantify error. "We've done better than simply identify the strongest signals, we've quantified measures of association to show they are statistically meaningful," she points out.

Overall, the authors say, "MixMAP offers new and complementary information as compared to single nucleotide polymorphism-based analysis approaches and is straightforward to implement with existing open-source statistical software tools."

The research is published today in Plos One.

Explore further: New statistical method could improve search for genes involved in common diseases

Related Stories

New statistical method could improve search for genes involved in common diseases

May 17, 2011
Recent breakthroughs in the analysis of genetic variation in large populations have led to the discovery of hundreds of genes involved in dozens of common diseases. Many of these discoveries were enabled by performing "meta-analysis," ...

New approach for efficient analysis of emerging genetic data

September 6, 2012
(Medical Xpress)—With the ability to sequence human genes comes an onslaught of raw material about the genetic characteristics that distinguish us, and wading through these reserves of data poses a major challenge for life ...

A hidden architecture: Researchers use novel methods to uncover gene mutations for common diseases

March 25, 2012
Human geneticists have long debated whether the genetic risk of the most common medical conditions derive from many rare mutations, each conferring a high degree of risk in different people, or common differences throughout ...

More links found between schizophrenia, cardiovascular disease

January 31, 2013
A new study, to be published in the Feb. 7, 2013 issue of the American Journal of Human Genetics, expands and deepens the biological and genetic links between cardiovascular disease and schizophrenia. Cardiovascular disease ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.