Cell discovery could hold key to causes of inherited diseases

February 26, 2013

Fresh insights into the protective seal that surrounds the DNA of our cells could help develop treatments for inherited muscle, brain, bone and skin disorders.

Researchers have discovered that the proteins within this coating – known as the – vary greatly between cells in different organs of the body.

This variation means that certain disease causing proteins will interact with the proteins in the protective seal to cause illness in some organs, but not others.

Until now scientists had thought that all proteins within the nuclear envelope were the same in every type of organ.

In particular the finding may provide insights into a rare muscle disease, Emery-Dreifuss muscular dystrophy.

This condition causes muscle wastage and , affects only muscles, even though it is caused by a defect in a nuclear found in every cell in the body.

Scientists say that the envelope proteins they have identified as being specific to muscle may interact with the defective nuclear envelope protein that causes Emery-Dreifuss muscular dystrophy, to give rise to the disease.

In a similar way, this may help to explain other heritable diseases that only affect certain parts of the body despite the defective proteins being present in every cell. The study also identified nuclear envelope proteins specific to liver and blood.

Some of these also interact with proteins in all cells that are responsible for other nuclear envelope diseases, ranging from brain and fat to , and so may help explain why things go wrong.

Dr Eric Schirmer, of the University of Edinburgh's Wellcome Trust Centre for , who led the study said: "Nobody could have imagined what we found.

The fact that most proteins in the nuclear envelope would be specific for certain tissue types is a very exciting development. This may finally enable us to understand this ever-growing spectrum of inherited diseases as well as new aspects of tissue-specific gene regulation."

The findings build on previous research that showed proteins in the nuclear envelope are linked to more than 20 heritable diseases.

Explore further: Mutation provides new insight into the molecular mechanisms of aging

More information: The study is published in the journal Nucleus.

Related Stories

Mutation provides new insight into the molecular mechanisms of aging

May 5, 2011
A new study identifies the mutation that underlies a rare, inherited accelerated-aging disease and provides key insight into normal human aging. The research, published by Cell Press online May 5 in the American Journal of ...

Scientists describe mechanism for rare muscle disease

October 3, 2011
(Medical Xpress) -- A team of scientists from the Friedrich Miescher Institute for Biomedical Research and the Hebrew University of Jerusalem describe in C. elegans the process leading to a rare form of Emery-Dreifuss muscular ...

Researchers gain insight into abnormally shaped cell nuclei of people with cancer

February 19, 2013
Misshapen cell nuclei are frequently observed in the cells of people with cancer and other diseases, but what causes the abnormality—and why it is associated with certain disorders—has remained unclear.

Research reveals novel transport mechanism for large ribonucleoproteins

May 10, 2012
The movement of genetic materials, such as RNA and ribosomes, from the nucleus to the cytoplasm is a critical component in a cell's ability to make the proteins necessary for essential biological functions. Until now, it ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.