Imaging fish in 3-D
: Automated system for high-speed analysis of vertebrate larvae could aid drug development (w/ Video

February 13, 2013 by Anne Trafton

Zebrafish larvae—tiny, transparent and fast-growing vertebrates—are widely used to study development and disease. However, visually examining the larvae for variations caused by drugs or genetic mutations is an imprecise, painstaking and time-consuming process.

Engineers at MIT have now built an that can rapidly produce 3-D, micron-resolution images of thousands of zebrafish and precisely analyze their physical traits. The system, described in the Feb. 12 edition of Nature Communications, offers a comprehensive view of how potential drugs affect , says Mehmet Fatih Yanik, senior author of the paper.

"Complex processes involving organs cannot be accurately recapitulated in cell culture today. Existing 3-D are still far too simple to model live animals," says Yanik, an MIT associate professor of electrical engineering and computer science and . "In whole animals, the biology is far more complicated."

Lead authors of the paper are MIT graduate student Carlos Pardo-Martin and Amin Allalou, a visiting student at MIT. Other authors are MIT senior research scientist Peter Eimon, MIT intern Jaime Medina, and Carolina Wahlby of the Broad Institute.

Zebrafish are genetically similar to humans and have many of the same developmental pathways, so scientists often use them to model human diseases including cancer, diabetes, Parkinson's disease and autism.

Using the new technology, researchers can grow larvae in tiny wells and flow them through a channel to an imaging platform. Once there, the embryos are rotated and 320 images are taken from different angles, allowing 3-D reconstructions to be made using optical projection tomography (OPT). Getting larvae to the platform takes about 15 seconds, and the imaging takes only 2.5 seconds. This allows hundreds or thousands of larvae to be imaged within hours.

In a 2010 paper, Yanik's team described the system that transports the to the imaging platform, which they combined with high-resolution two-dimensional imaging. In the latest version, they developed a high-speed OPT imaging technique, which takes hundreds of two-dimensional images and subsequently generates a 3-D image, similar to a CT scan.

They also created a computer algorithm that can measure hundreds of traits and use that information to create a comprehensive phenotype map—the overall description of an organism's characteristics—for each larva. This enables rapid and detailed studies of how different drugs affect those phenotypes.

"You could probably look at almost any organ or tissue that you're interested in," Eimon says. "It gives researchers a way to rapidly measure and quantify and put numbers on the kinds of phenotypes and gene-expression patterns that they've been looking at for years and years."

In this study, the researchers focused on the craniofacial skeleton, which is analogous to the human skull. They measured the length and volume of each of the bones that make up this structure, as well as the angles between the bones.

Each embryo was imaged five days after being treated with one of nine different teratogens—drugs that cause developmental abnormalities. The researchers compared their results with the drugs' known effects and found that they were very consistent. They also obtained high-resolution, 3-D images of the craniofacial skeletons, which are less than a millimeter long.

"Now that we're able to load the animals, and we can image them really quickly, and we have a way to start looking at the information, the sky's the limit," Pardo-Martin says. "What we have to do now is ask the big questions, because the technology has advanced."

This kind of analysis could be very valuable for drug developers who need to efficiently screen thousands of drug candidates. It could also be used to study hard-to-detect changes in phenotype caused by , says Joseph Fetcho, a professor of neurobiology and behavior at Cornell University.

"A really high-throughput way to assess phenotype is very important for measuring small effects on the development of an organism," says Fetcho, who was not part of the research team. "You can see what the phenotype looks like in a large population and quantify it in a very rigorous way."

The software that the researchers wrote to generate the 3-D images is available on their website.

Related Stories

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.