Study identifies liver gene that regulates cholesterol and fat blood levels

February 7, 2013

Researchers have identified a microRNA liver gene, miR-27b, which regulates lipid (cholesterol or fat) levels in the blood. This regulator gene controls multiple genes involved in dyslipidemia—abnormal blood cholesterol levels that can contribute to heart disease. Study details published in the February issue of Hepatology, a journal of the American Association for the Study of Liver Diseases (AASLD), describe a new in silico approach to identify the significance of microRNAs in regulating disease-related gene pathways.

The (HGP) was completed in April, 2003 and the world had a map of the 3 billion making up the human genome. One of the HGP leaders was Dr. Francis Collins, currently NIH Director and contributor to the present study. "The HGP provided the basic instruction book for human biology," explains Dr. Collins. "Further , such as the investigation of microRNAs, have built upon the efforts of the HGP to explain how the genome carries out its functions, and helps identify genes involved in the development of disease."

For the present study, lead author Dr. Kasey Vickers from the NIH/NHLBI Lipoprotein Metabolism Section (presently at Vanderbilt University School of Medicine) and colleagues performed high-throughput small RNA sequencing of mouse and detected roughly 150 microRNAs. The team used a novel in silico approach to identify microRNA regulatory hub genes involved in lipid metabolism. In human and mouse livers miR-27b was determined to be the strongest hub with 27 predicted targets.

"We found liver miR-27b levels to be sensitive to high triglycerides (hyperlipidemia) in the blood and liver," said Dr. Vickers. The team reported a nearly 3-fold increase in miR-27b levels in the liver of mice on a high-fat diet, with 42% of calories from fat. In human liver , researchers determined that miR-27b regulates mRNA and of key lipid-metabolism genes (Angptl3 and Gpam). Vickers added, "Using a mouse model of dyslipidemia and atherosclerosis, we found hepatic miR-27b and its target genes to be inversely altered, and thus contributing to risk for cardiovascular disease."

The senior author of the study, Dr. Praveen Sethupathy from the University of North Carolina at Chapel Hill School of Medicine, leads an interdisciplinary laboratory that weaves together computational and experimental approaches to understand the role of microRNAs in complex metabolic diseases. "MicroRNAs are thought to impart stability to gene networks, particularly in the face of changes to the environment, such as diet," he says. "MicroRNAs represent promising therapeutic targets for a variety of metabolic diseases, but a lot more work remains to be done in order to fully appreciate how and when they function."

In a related editorial published in this month's issue of Hepatology, Dr. Carlos Fernández-Hernando from the New York University School of Medicine confirms the emergence of microRNAs in regulating cholesterol and fatty acid metabolism. He writes, "Altogether these data (by Vickers et al.) strongly suggest that miR-27b regulates , but its role in regulating lipid levels in other cells, such as macrophages and neurons, remains unclear." Dr. Fernández-Hernando highlights the importance of the new in silico approach used by the researchers to identify microRNAs in regulating genes involved in the same bodily process, suggesting this method could be used to identify microRNAs in controlling genetic networks.

Explore further: Novel therapeutic target identified to decrease triglycerides and increase 'good' cholesterol

More information: "MicroRNA-27b is a Regulatory Hub in Lipid Metabolism and is Altered in Dyslipidemia." Kasey C. Vickers, Bassem M. Shoucri, Michael G. Levin, Han Wu, Daniel S. Pearson, David Osei-Hwedieh, Francis S. Collins, Alan T. Remaley and Praveen Sethupathy. Hepatology; (DOI: 10.1002/hep.25846); Print Issue Date: February, 2013.
URL: doi.wiley.com/10.1002/hep.25846

Editorial: "The Emerging Role of miRNAs in the Regulation of Lipid Metabolism." Carlos Fernández-Hernando. Hepatology; (DOI: 10.1002/hep.25960); Print Issue Date: February, 2013.
URL: doi.wiley.com/10.1002/hep.25960

Related Stories

Novel therapeutic target identified to decrease triglycerides and increase 'good' cholesterol

October 20, 2011
Researchers at NYU Langone Medical Center today announce findings published in the October 20 issue of Nature that show for the first time the inhibition of both microRNA-33a and microRNA-33b (miR-33a/b) with chemically modified ...

Study provides new drug target for Her-2 related breast cancer

January 22, 2013
Research led by Dr. Suresh Alahari, the Fred Brazda Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans and its Stanley S. Scott Cancer Center, details exactly how the Her2 cancer gene ...

Hepatitis C virus survives by hijacking liver microRNA: study

January 2, 2012
Viral diseases are still one of the biggest challenges to medical science. Thanks to thousands of years of co-evolution with humans, their ability to harness the biology of their human hosts to survive and thrive makes them ...

Researchers discover how hepatitis C virus reprograms human liver cells

December 18, 2012
Hepatitis C virus has evolved to invade and hijack the basic machinery of the human liver cell to ensure its survival and spread. Researchers at the University of North have discovered how hepatitis C binds with and repurposes ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.