New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

February 4, 2013, University of Auckland

New Zealand research revealing a new mechanism for how glucose stimulates insulin secretion may provide a new explanation for how a gene that makes people more susceptible to diabetes – called TCF7L2 – actually contributes to the disease.

"It has long been known that insulin is secreted from beta-cells in the pancreas, in response to rising , and that the insulin in turn controls glucose levels," explains team leader Professor Peter Shepherd from the Maurice Wilkins Centre for Molecular Biodiscovery and The University of Auckland. "However the mechanisms controlling insulin secretion have not been fully understood."

The latest research in Professor Shepherd's laboratory has revealed the missing link in a series of by which glucose stimulates insulin secretion from beta-cells. The scientists found that a signalling molecule called cyclic-AMP acts to stabilise beta-catenin, a protein they show has an important role in regulating beta-cell function, including the release of insulin in response to glucose.

"This is important as Type-2 diabetes is increasing to worldwide. It is caused by defective from beta-cells, and the resulting failure to control blood glucose levels. In order to understand the disease it's important to learn about the mechanism that control insulin secretion," says lead researcher Dr Emmanuelle Cognard, also from The University of Auckland.

This newly discovered signalling pathway may explain how one of the major diabetes susceptibility genes, called TCF7L2, can impair insulin secretion, as TCF7L2 redirects beta-catenin away from the cell surface and so would reduce the effect of beta-catenin on . The research is likely to influence the way new drugs to treat Type-2 diabetes are designed.

The research, which was funded by the Health Research Council of New Zealand, has been published in the February 2013 issue of the Biochemical Journal.

Explore further: Broader approach reveals genetic complexity behind diabetes genes

Related Stories

Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012
(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.