New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

February 4, 2013

New Zealand research revealing a new mechanism for how glucose stimulates insulin secretion may provide a new explanation for how a gene that makes people more susceptible to diabetes – called TCF7L2 – actually contributes to the disease.

"It has long been known that insulin is secreted from beta-cells in the pancreas, in response to rising , and that the insulin in turn controls glucose levels," explains team leader Professor Peter Shepherd from the Maurice Wilkins Centre for Molecular Biodiscovery and The University of Auckland. "However the mechanisms controlling insulin secretion have not been fully understood."

The latest research in Professor Shepherd's laboratory has revealed the missing link in a series of by which glucose stimulates insulin secretion from beta-cells. The scientists found that a signalling molecule called cyclic-AMP acts to stabilise beta-catenin, a protein they show has an important role in regulating beta-cell function, including the release of insulin in response to glucose.

"This is important as Type-2 diabetes is increasing to worldwide. It is caused by defective from beta-cells, and the resulting failure to control blood glucose levels. In order to understand the disease it's important to learn about the mechanism that control insulin secretion," says lead researcher Dr Emmanuelle Cognard, also from The University of Auckland.

This newly discovered signalling pathway may explain how one of the major diabetes susceptibility genes, called TCF7L2, can impair insulin secretion, as TCF7L2 redirects beta-catenin away from the cell surface and so would reduce the effect of beta-catenin on . The research is likely to influence the way new drugs to treat Type-2 diabetes are designed.

The research, which was funded by the Health Research Council of New Zealand, has been published in the February 2013 issue of the Biochemical Journal.

Explore further: Broader approach reveals genetic complexity behind diabetes genes

Related Stories

Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012
(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result ...

Recommended for you

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.