Scientists revisit biochemical basis for depression

February 12, 2013

Symptoms of depression and anxiety can be induced in mice by increasing levels of acetylcholine, suggesting that depression may have different biochemical roots than previously believed, Yale School of Medicine researchers report the week of Feb. 11 in the journal Proceedings of the National Academy of Sciences.

A quarter of a century ago, the introduction of Prozac changed how depression was treated. The brain that respond to the and is called a SSRI, or serotonin reuptake inhibitor. Today, the most commonly prescribed antidepressants are SSRIs.

However, the new study suggests depression could arise from disruption of a different neurotransmitter system.

"We have actually seen depression-like behavior in mice when there is a breakdown in a acetylcholine regulation," said Marina Picciotto, the Charles B. G. Murphy Professor of Psychiatry and professor of neurobiology and of pharmacology and senior author of the paper. "We have also seen altered acetylcholine levels in the brain of people with depression, which shows that this is a good model for the human illness."

The team also found that they could reduce those same symptoms in mice by introduction of an SSRI. Picciotto said the findings suggest that it is possible that depression is not caused by disruption of serotonin signaling at all.

"Serotonin may be treating the problem, but acetylcholine disruption may be a primary cause," said Picciotto. "If we can treat the root cause, perhaps we can get a better response from the patient."

Explore further: Studies seek better understanding and treatment of depression

Related Stories

Recommended for you

New technique improves blood flow to damaged tissues

January 24, 2017

A gene essential for making blood vessels in embryos can transform amniotic cells into therapeutic blood vessel cells, according to new research from Weill Cornell Medicine investigators. The findings, published Jan. 16 in ...

Choreographing the microRNA-target dance

January 23, 2017

Scientists face a conundrum in their quest to understand how microRNAs regulate genes and therefore how they influence human disease at the molecular level: How do these tiny RNA molecules find their partners, called messenger ...

As cells age, the fat content within them shifts

January 19, 2017

As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids, according to a new University at Buffalo study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.