Scientists revisit biochemical basis for depression

February 12, 2013, Yale University

Symptoms of depression and anxiety can be induced in mice by increasing levels of acetylcholine, suggesting that depression may have different biochemical roots than previously believed, Yale School of Medicine researchers report the week of Feb. 11 in the journal Proceedings of the National Academy of Sciences.

A quarter of a century ago, the introduction of Prozac changed how depression was treated. The brain that respond to the and is called a SSRI, or serotonin reuptake inhibitor. Today, the most commonly prescribed antidepressants are SSRIs.

However, the new study suggests depression could arise from disruption of a different neurotransmitter system.

"We have actually seen depression-like behavior in mice when there is a breakdown in a acetylcholine regulation," said Marina Picciotto, the Charles B. G. Murphy Professor of Psychiatry and professor of neurobiology and of pharmacology and senior author of the paper. "We have also seen altered acetylcholine levels in the brain of people with depression, which shows that this is a good model for the human illness."

The team also found that they could reduce those same symptoms in mice by introduction of an SSRI. Picciotto said the findings suggest that it is possible that depression is not caused by disruption of serotonin signaling at all.

"Serotonin may be treating the problem, but acetylcholine disruption may be a primary cause," said Picciotto. "If we can treat the root cause, perhaps we can get a better response from the patient."

Explore further: Studies seek better understanding and treatment of depression

Related Stories

Studies seek better understanding and treatment of depression

August 14, 2012
Connecting the dots between two molecules whose levels are decreased in depression and increased by current antidepressants could yield new therapies, researchers say.

Recommended for you

Breakthrough article on mechanistic features of microRNA targeting and activity

March 23, 2018
Giovanna Brancati and Helge Grosshans from the FMI have described target specialization of miRNAs of the let-7 family. They identified target site features that determine specificity, and revealed that specificity can be ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.