Cancer-promoting protein found to also suppress cell growth

March 7, 2013

Some cellular proteins have multiple, and occasionally opposing, functions. Professor Adrian Krainer [link: Faculty profile] and colleagues at Cold Spring Harbor Laboratory demonstrate in a paper published online today in Molecular Cell [link: to paper via doi #] that the oncogenic protein SRSF1 can also trigger a stop in cell growth and prevent cancerous proliferation by stabilizing p53, the powerful tumor-suppressor protein.

SRSF1 is a with many jobs. It was first described as necessary for the process in which mRNA, the messenger molecule transcribed from DNA to act as the template by which proteins are made, is cut and pasted into different genetic arrangements. This is known as "splicing." It has also been shown to be involved in many other processes relating to .

Krainer's group has also previously implicated SRSF1 in cancer. They showed that when overexpressed in immortal fibroblast or epithelial cells it drives transformation and causes them to grow in a cancerous manner – known as oncogenic proliferation. It is also expressed at markedly high levels in various tumors, including lung and .

SRSF1 has also been shown to shuttle in and out of the cell's nucleus. This suggests it is involved in various processes that occur in either nuclear or cytoplasmic compartments. To investigate the diverse roles of SRSF1, a former graduate student in the Krainer lab, Oliver Fregoso (now a postdoc at the Fred Hutchinson Cancer Research Center in Seattle) initiated a study to look for other proteins that SRSF1 interacts with.

While he got lots of "hits," the key to the puzzle was to separate the signal from noise, i.e., to determine what was a real interaction and what wasn't. Further investigation revealed that a protein called RPL5 interacted specifically with SRSF1. RPL5 forms part of the , a large complex of RNAs and proteins responsible for the translation of mRNA into the amino-acid chains that make proteins.

More recently, Dr. Fregoso, together with graduate student Shipra Das in Krainer's lab found that SRSF1 interacts with RPL5 as part of a complex that is not involved in their respective roles in splicing or the ribosome. They showed that this complex prevents the degradation of the powerful tumor-suppressor protein p53.

Yet Krainer's team also showed that increased expression of SRSF1 in primary human fibroblast cells decreased their proliferation and triggered a cellular senescence program in which is arrested. "It's a little surprising because we've published about SRSF1 being oncogenic, and here we find it stabilizing a tumor-suppressor protein," Krainer acknowledged. "But this seems to be a theme with oncogenes: the cells try to respond to their activity by undergoing senescence," a quiescent state in which cells don't replicate.

The process of cell-cycle arrest in response to oncogenic stress is known as oncogene induced senescence (OIS) and was described at CSHL by Scott Lowe's laboratory in 1997 (http://www.sciencedirect.com/science/article/pii/S0092867400819029). That discovery was the first indication that normal cells have a mechanism in place that acts to prevent transformation into a cancer cell.

Through the interaction of the splicing protein SRSF1 and the ribosomal protein RLP5 Krainer's new research also identifies a link between oncogenic stress and the ribosomal stress response. This was found to result in the activation of p53 and cell-growth arrest. "We've identified a novel mechanism by which the oncoprotein SRSF1 keeps a check on its own aberrant activity," noted Das. "The discovery of this novel role for SRSF1 enhances our understanding of how tumors arise and the pathways to transformation," added Krainer.

Explore further: Team uses antisense technology that exploits gene splicing mechanism to kill cancer cells

More information: "Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence" is published online in Molecular Cell on March 7, 2013. The authors are: Oliver I Fregoso, Shipra Das, Martin Akerman, and Adrian Krainer.

Related Stories

Team uses antisense technology that exploits gene splicing mechanism to kill cancer cells

October 31, 2012
Cancer cells grow fast. That's an essential characteristic of what makes them cancer cells. They've crashed through all the cell-cycle checkpoints and are continuously growing and dividing, far outstripping our normal cells. ...

Elimination of two ribosome subunits activates cell cycle control

May 22, 2012
Alterations in the formation of ribosomes (the elements of the cell where proteins are made) cause the induction of p53 protein and cell cycle disruption. This process is crucial to understand fundamental biological processes ...

Study reveals details of alternative splicing circuitry that promotes cancer's Warburg effect

November 2, 2011
Cancer cells maintain their life-style of extremely rapid growth and proliferation thanks to an enzyme called PK-M2 (pyruvate kinase M2) that alters the cells' ability to metabolize glucose – a phenomenon known as the ...

New tumor suppressor gene identified

February 13, 2012
A recent study published in Clinical Cancer Research suggests that the protein hVps37A suppresses tumor growth in ovarian cancer. The work, which was funded by the Austrian Science Fund FWF, shows, for the first time, that ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.