Clues point to cause of a rare fat-distribution disease

March 20, 2013, Johns Hopkins University School of Medicine

Studying a protein that gives structure to the nucleus of cells, Johns Hopkins researchers stumbled upon mutations associated with familial partial lipodystrophy (FPLD), a rare disease that disrupts normal patterns of fat distribution throughout the body.

"Our findings open new paths for learning how and why fat cells are disproportionately affected by in the protein lamin A, which is found in the nucleus of most cells of the body," says Katherine Wilson, Ph.D., professor of at the Johns Hopkins University School of Medicine.

According to the researchers, this is the first report that another protein, SUMO1, can attach to lamin A. Importantly, they found that FPLD-causing mutations in lamin A prevent this attachment. Details of the study were published in the Feb. 1 issue of the journal Molecular Biology of the Cell.

Wilson says lamin A is primarily known for giving shape to the nucleus. "It forms networks of strong 'cables' at the and works with other proteins to create and maintain the three-dimensional environment in which chromosomes are properly organized, protected and expressed," she says.

When the Wilson group made their discovery, they were studying lamin A binding to another protein, actin. Actin can sometimes form a complex with certain SUMO proteins, small proteins often attached to other proteins to alter their functions, their locations and their interactions with additional proteins.

"Sometimes you go into an experiment looking for one thing but you find another," says Wilson. "We wanted to know if lamin A could bind to actin-SUMO1 complexes. Instead, we found that SUMO1 itself attaches to lamin A."

SUMO1 is usually attached to proteins at sites with certain properties; these sites can be predicted by the surrounding , the basic building blocks of proteins whose blueprints are found in genes. So the researchers searched lamin A's for predicted binding sites and found five. Using targeted genetic techniques, they created lamin A variants, each with a mutation at a different predicted SUMO1 attachment site. They then added SUMO1 to the mutants and tested whether it could attach to them or not.

Two mutations significantly decreased SUMO1 attachment. One was at a predicted site; the other was unexpectedly in their comparison "control" variant. "Since the mutation site in our control variant was not a predicted SUMO1 attachment site, we were curious about it," explains Wilson. "Mutations in lamin A cause more than 15 different diseases, so we checked the genetic database to see if any diseases were associated with mutations near the SUMO1 attachment site, and FPLD leapt out like a neon sign."

FPLD is a very rare condition that starts around puberty. Fat on the legs of patients is reduced while it accumulates at other locations, including the neck and face. Patients can also become diabetic.

Twenty-four different mutations in lamin A can cause FPLD. To see if two other FPLD-causing mutations near the SUMO1 attachment site affected SUMO1 attachment, the team created these variants and tested them as before. One of the new variants did show decreased SUMO1 attachment. Based on the location of that mutation and one of the other SUMO1-disrupting mutations, the researchers were able to identify a "patch" on the surface of the lamin A protein that is important for SUMO1 attachment.

Exactly how lamin A and SUMO1 connect to FPLD is still a mystery. "We can only speculate on how lamin A and SUMO1 work together to regulate ," says Wilson. "But these results raise new research questions that will hopefully move FPLD studies forward."

Explore further: Scientists describe mechanism for rare muscle disease

More information: dx.doi.org/10.1091/mbc.E12-07-0527

Related Stories

Scientists describe mechanism for rare muscle disease

October 3, 2011
(Medical Xpress) -- A team of scientists from the Friedrich Miescher Institute for Biomedical Research and the Hebrew University of Jerusalem describe in C. elegans the process leading to a rare form of Emery-Dreifuss muscular ...

Promising new drug target discovered for treatment and prevention of heart failure

August 27, 2012
A promising new drug target for the treatment and prevention of heart failure has been discovered by researchers at Mount Sinai School of Medicine in New York, NY, US. The study was presented at the ESC Congress 2012 by principal ...

Promising target in treating and preventing the progression of heart failure identified

September 7, 2011
Researchers at Mount Sinai School of Medicine have identified a new drug target that may treat and/or prevent heart failure. The team evaluated failing human and pig hearts and discovered that SUMO1, a so-called "chaperone" ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.