Flip of a single molecular switch makes an old brain young

March 6, 2013
This image shows neurons. Green: A cultured neuron with projecting dendrites studded with sites of communication between neurons, known as dendritic spines. White: A 3D reconstruction of neurons in the somatosensory cortex. Credit: Yale University

The flip of a single molecular switch helps create the mature neuronal connections that allow the brain to bridge the gap between adolescent impressionability and adult stability. Now Yale School of Medicine researchers have reversed the process, recreating a youthful brain that facilitated both learning and healing in the adult mouse.

Scientists have long known that the young and old brains are very different. Adolescent brains are more malleable or plastic, which allows them to learn languages more quickly than adults and speeds recovery from brain injuries. The comparative rigidity of the adult brain results in part from the function of a single gene that slows the rapid change in synaptic connections between neurons.

By monitoring the synapses in living mice over weeks and months, Yale researchers have identified the key for brain maturation a study released March 6 in the journal Neuron. The Nogo Receptor 1 gene is required to suppress high levels of plasticity in the and create the relatively quiescent levels of plasticity in adulthood. In mice without this gene, juvenile levels of persist throughout adulthood. When researchers blocked the function of this gene in old mice, they reset the old brain to adolescent levels of plasticity.

"These are the molecules the brain needs for the transition from adolescence to adulthood," said Stephen Strittmatter. Vincent Coates Professor of Neurology, Professor of Neurobiology and senior author of the paper. "It suggests we can turn back the clock in the and recover from trauma the way kids recover."

Rehabilitation after brain injuries like strokes requires that patients re-learn tasks such as moving a hand. Researchers found that lacking Nogo Receptor recovered from injury as quickly as adolescent mice and mastered new, complex more quickly than adults with the receptor.

"This raises the potential that manipulating Nogo Receptor in humans might accelerate and magnify rehabilitation after brain injuries like strokes," said Feras Akbik, Yale doctoral student who is first author of the study.

Researchers also showed that Nogo Receptor slows loss of memories. Mice without Nogo receptor lost stressful memories more quickly, suggesting that manipulating the receptor could help treat post-traumatic stress disorder.

"We know a lot about the early development of the brain," Strittmatter said, "But we know amazingly little about what happens in the brain during late adolescence."

Explore further: Sociability may depend upon brain cells generated in adolescence

Related Stories

Sociability may depend upon brain cells generated in adolescence

October 4, 2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

Finding the way to memory: Guidance proteins regulate brain plasticity

February 4, 2013
Our ability to learn and form new memories is fully dependent on the brain's ability to be plastic – that is to change and adapt according to new experiences and environments. A new study from the Montreal Neurological ...

Scientists reveal molecular sculptor of memories

September 26, 2011
Researchers working with adult mice have discovered that learning and memory were profoundly affected when they altered the amounts of a certain protein in specific parts of the mammals’ brains.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.