Flip of a single molecular switch makes an old brain young

March 6, 2013, Yale University
This image shows neurons. Green: A cultured neuron with projecting dendrites studded with sites of communication between neurons, known as dendritic spines. White: A 3D reconstruction of neurons in the somatosensory cortex. Credit: Yale University

The flip of a single molecular switch helps create the mature neuronal connections that allow the brain to bridge the gap between adolescent impressionability and adult stability. Now Yale School of Medicine researchers have reversed the process, recreating a youthful brain that facilitated both learning and healing in the adult mouse.

Scientists have long known that the young and old brains are very different. Adolescent brains are more malleable or plastic, which allows them to learn languages more quickly than adults and speeds recovery from brain injuries. The comparative rigidity of the adult brain results in part from the function of a single gene that slows the rapid change in synaptic connections between neurons.

By monitoring the synapses in living mice over weeks and months, Yale researchers have identified the key for brain maturation a study released March 6 in the journal Neuron. The Nogo Receptor 1 gene is required to suppress high levels of plasticity in the and create the relatively quiescent levels of plasticity in adulthood. In mice without this gene, juvenile levels of persist throughout adulthood. When researchers blocked the function of this gene in old mice, they reset the old brain to adolescent levels of plasticity.

"These are the molecules the brain needs for the transition from adolescence to adulthood," said Stephen Strittmatter. Vincent Coates Professor of Neurology, Professor of Neurobiology and senior author of the paper. "It suggests we can turn back the clock in the and recover from trauma the way kids recover."

Rehabilitation after brain injuries like strokes requires that patients re-learn tasks such as moving a hand. Researchers found that lacking Nogo Receptor recovered from injury as quickly as adolescent mice and mastered new, complex more quickly than adults with the receptor.

"This raises the potential that manipulating Nogo Receptor in humans might accelerate and magnify rehabilitation after brain injuries like strokes," said Feras Akbik, Yale doctoral student who is first author of the study.

Researchers also showed that Nogo Receptor slows loss of memories. Mice without Nogo receptor lost stressful memories more quickly, suggesting that manipulating the receptor could help treat post-traumatic stress disorder.

"We know a lot about the early development of the brain," Strittmatter said, "But we know amazingly little about what happens in the brain during late adolescence."

Explore further: Sociability may depend upon brain cells generated in adolescence

Related Stories

Sociability may depend upon brain cells generated in adolescence

October 4, 2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

Finding the way to memory: Guidance proteins regulate brain plasticity

February 4, 2013
Our ability to learn and form new memories is fully dependent on the brain's ability to be plastic – that is to change and adapt according to new experiences and environments. A new study from the Montreal Neurological ...

Scientists reveal molecular sculptor of memories

September 26, 2011
Researchers working with adult mice have discovered that learning and memory were profoundly affected when they altered the amounts of a certain protein in specific parts of the mammals’ brains.

Recommended for you

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

BOLD view of white matter

January 15, 2018
The brain consists of gray matter, which contains the nerve cell bodies (neurons), and white matter, bundles of long nerve fibers (axons) that until recently were considered passive transmitters of signals between different ...

Does an exploding brain network cause chronic pain?

January 12, 2018
A new study finds that patients with fibromyalgia have brain networks primed for rapid, global responses to minor changes. This abnormal hypersensitivity, called explosive synchronization (ES), can be seen in other network ...

An innovative PET tracer can measure damage from multiple sclerosis in mouse models

January 12, 2018
The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.