Key to tuberculosis cure could lie underwater

March 8, 2013, University of Illinois at Chicago

The search for a cure for deadly infectious diseases has led Brian Murphy deep underwater. Murphy, assistant professor of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago, is collecting actinomycete bacteria from water throughout the world in a hunt for new antibiotics.

He and Scott Franzblau, director of UIC's Institute for Tuberculosis Research, are lead investigators on a new, three-year, $1.1 million grant from the Defense Department to find compounds to fight tuberculosis, a disease that killed more than 1.4 million people worldwide in 2011.

As a killer, tuberculosis—caused by a bacterium that most often attacks the lungs—is second only to HIV among , according to the . The bacteria lie dormant in about one-third of the population, and 8 million new cases are reported annually.

U.S. military personnel face a much higher risk of tuberculosis than American civilians, due to their frequent deployment in developing countries where infection rates are higher, Murphy said. Some units are stationed in locations where the spread of tuberculosis is a major hazard.

" scaffolds that can reduce the spread of tuberculosis throughout the military and quickly address a tuberculosis epidemic are in serious need," he said.

Murphy has so far collected a "library" of nearly 1,000 actinomycete strains, and 1,200 samples of they produce, from marine waters off Massachusetts, Maine, the Florida Keys and Vietnam, and from the freshwater of the Great Lakes.

From his collection, he and Franzblau have identified eight aquatic actinomyces strains that target non-replicating tuberculosis. A promising new class of compounds with drug-like potency emerged from their screenings and is the focus of the new grant, Murphy said. It was isolated from sediment collected 260 feet below the surface of Lake Michigan.

"Freshwater environments are a new frontier for drug-lead discovery," Murphy said. "Actinomycetes have the ability to produce molecules that have a high potential for use as medicines, and very little is known about these bacteria in such environments."

The UIC team will be the first to explore each of the five Great Lakes for antibiotic-producing actinomycete bacteria and will evaluate the viability of freshwater systems as a source for drug-lead discovery.

"If we can understand the capacity for these bacteria to produce new, small-molecule drug leads, it will help guide a global freshwater discovery effort," Murphy said.

Multi-drug and extensively drug-resistant strains of tuberculosis, which are unaffected by first- and second-line drug regimens, are the most serious threat, Franzblau said.

"Perhaps the most problematic aspect of tuberculosis treatment is its duration," said Murphy. Franzblau said lengthy treatment is required to eliminate a persistent population of slow-growing or non-replicating tuberculosis.

Explore further: FDA approves first new tuberculosis in 40 years

Related Stories

FDA approves first new tuberculosis in 40 years

December 31, 2012
The Food and Drug Administration says it has approved a Johnson & Johnson tuberculosis drug that is the first new medicine to fight the deadly infection in more than four decades.

Scientists reveal how natural antibiotic kills tuberculosis bacterium

September 17, 2012
A natural product secreted by a soil bacterium shows promise as a new drug to treat tuberculosis report scientists in a new study published in EMBO Molecular Medicine. A team of scientists working in Switzerland has shown ...

China faces 'serious' epidemic of drug-resistant TB (Update)

June 6, 2012
China faces a "serious epidemic" of drug-resistant tuberculosis according to the first-ever nationwide estimate of the size of the problem there, said a US-published study on Wednesday.

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.