Study reveals potential target to better treat, cure anxiety disorders

March 5, 2013, Boston University Medical Center

Researchers at Boston University School of Medicine (BUSM) have, for the first time, identified a specific group of cells in the brainstem whose activation during rapid eye movement (REM) sleep is critical for the regulation of emotional memory processing. The findings, published in the Journal of Neuroscience, could help lead to the development of effective behavioral and pharmacological therapies to treat anxiety disorders, such as post-traumatic stress disorder, phobias and panic attacks.

There are two main stages of sleep – REM and non-REM – and both are necessary to maintain health and to regulate multiple , including . During non-, the body repairs tissue, regenerates cells and improves the function of the body's immune system. During REM sleep, the brain becomes more active and the muscles of the body become paralyzed. Additionally, dreaming generally occurs during REM sleep, as well as physiological events including saccadic eye movements and rapid fluctuations of respiration, heart rate and body temperature. One particular physiological event, which is a hallmark sign of REM sleep, is the appearance of phasic pontine waves (P-waves). The P-wave is a unique brain wave generated by the activation of a group of glutamatergic cells in a specific region within the brainstem called the pons.

Memories of fearful experiences can lead to enduring alterations in emotion and behavior and sleep plays a natural emotional regulatory role after stressful and traumatic events. Persistence of , particularly of REM sleep, is predictive of developing symptoms of . A core symptom of these disorders frequently reported by patients is the persistence of fear-provoking memories that they are unable to extinguish. Presently, exposure therapy, which involves controlled re-exposure to the original fearful experience, is considered one of the most effective evidence-based treatments for anxiety disorders. Exposure therapy produces a new memory, called an extinction memory, to coexist and compete with the fearful memory when the fearful cue/context is re-encountered.

The strength of the extinction memory determines the efficacy of exposure therapy. A demonstrated prerequisite for the successful development of an extinction memory is adequate sleep, particularly REM sleep, after exposure therapy. However, adequate or increased sleep alone does not universally guarantee its therapeutic efficacy.

"Given the inconsistency and unpredictability of exposure therapy, we are working to identify which process(es) during REM sleep dictate the success or failure of exposure therapy," said Subimal Datta, PhD, director and principle investigator at the Laboratory of Sleep and Cognitive Neuroscience at BUSM who served as the study's lead author.

The researchers used contextual fear extinction training, which works to turn off the conditioned fear, to study which brain mechanisms play a role in the success of exposure therapy. The study results showed that fear extinction training increased REM sleep. Surprisingly, however, only 57 percent of subjects retained fear extinction memory, meaning that they did not experience the fear, after 24 hours. There was a tremendous increase of phasic P-wave activity among those subjects. In 43 percent of subjects, however, the wave activity was absent and they failed to retain fear extinction memory, meaning that they re-experienced fear.

"The study results provide direct evidence that the activation of phasic P-wave activity within the brainstem, in conjunction with exposure therapy, is critical for the development of long-term retention of memory," said Datta, who also is a professor of psychiatry and neurology at BUSM. In addition, the study indicates the important role that the brainstem plays in regulating emotional memory.

Future research will explore how to activate this mechanism in order to help facilitate the development of new potential pharmacological treatments that will complement to better treat anxiety and other psychological disorders.

According to the National Institute of Mental Health, anxiety disorders affect approximately 40 million American adults each year. While anxiety can sometimes be a normal and beneficial reaction to stress, some people experience excessive anxiety that they are unable to control, which can negatively impact their day to day life.

Explore further: Giving phobias a rest: Research suggests key role for sleep in treating anxiety, stress

Related Stories

Giving phobias a rest: Research suggests key role for sleep in treating anxiety, stress

July 24, 2012
Exposure therapy for irrational fear of spiders seems to be more effective if it is followed by sleep, according to a recent study in the Journal of Psychiatric Research. The results have implications for treatment of phobias, ...

Researchers identify molecular mechanism that regulates wakefulness, sleep

November 22, 2011
Researchers at Boston University School of Medicine (BUSM) have, for the first time, identified an intracellular signaling enzyme that regulates the wake-sleep cycle, which could help lead to the development of more effective ...

REM sleep enhances emotional memories, study shows

December 18, 2012
(Medical Xpress)—Witnessing a car wreck or encountering a poisonous snake are scenes that become etched in our memories.

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.