Researchers pinpoint brain mechanisms that make the auditory system sensitive to behaviorally relevant sounds

April 2, 2013, University of Pennsylvania School of Medicine

(Medical Xpress)—How do we hear? More specifically, how does the auditory center of the brain discern important sounds – such as communication from members of the same species – from relatively irrelevant background noise? The answer depends on the regulation of sound by specific neurons in the auditory cortex of the brain, but the precise mechanisms of those neurons have remained unclear. Now, a new study from the Perelman School of Medicine at the University of Pennsylvania has isolated how neurons in the rat's primary auditory cortex (A1) preferentially respond to natural vocalizations from other rats over intentionally modified vocalizations (background sounds). A computational model developed by the study authors, which successfully predicted neuronal responses to other new sounds, explained the basis for this preference.

The research is published in the Journal of Neurophysiology.

Rats communicate with each other mostly through ultrasonic vocalizations (USVs) beyond the range of human hearing. Although the existence of these USV conversations has been known for decades, "the acoustic richness of them has only been discovered in the last few years," said senior study author Maria N. Geffen, PhD, assistant professor of Otorhinolaryngology: at Penn. That acoustical complexity raises questions as to how the animal brain recognizes and responds to the USVs. "We set out to characterize the responses of to USVs and to come up with a model that would explain the mechanism that makes these neurons preferentially responsive to these relevant sounds."

Geffen and her colleagues obtained recordings of USVs from two rats kept together in a cage, then played the recordings to a separate group of male rats, while their neuronal responses were acquired and recorded. The researchers also used USV recordings that were modified in several ways, such as having background sounds filtered out and being played backwards and at different speeds to mimic unimportant . "We found that neurons in the respond strongly and selectively to the original ultrasonic vocalizations and not the transformed versions we created," says Geffen.

Using the data collected on the responses of A1 neurons to various USVs, the researchers developed a that could predict the activity of an individual neuron based on the pitch and duration of the USV. Geffen observes that "the details of their responses could be predicted with high accuracy." It was possible to determine which aspects of the acoustic input best drove individual neurons. Remarkably, it turned out that the acoustic parameters that worked best in driving the neuronal responses corresponded to the statistics of the natural rats produce.

The work makes clear for the first time, says Geffen, "the mechanisms of how the auditory system picks out behaviorally relevant sounds, such as same species communication signals, and processes them more effectively than less relevant sounds. This information is fundamental in understanding how sound perception helps animals survive. We conclude that neurons in the auditory cortex are specialized for processing and efficiently responding to natural and behaviorally relevant sounds."

Explore further: Rewired visual input to sound-processing part of the brain leads to compromised hearing

More information: jn.physiology.org/content/109/7/1912.abstract

Related Stories

Rewired visual input to sound-processing part of the brain leads to compromised hearing

August 22, 2012
Scientists at Georgia State University have found that the ability to hear is lessened when, as a result of injury, a region of the brain responsible for processing sounds receives both visual and auditory inputs.

Neural circuit in the songbird brain that encodes representation of learned vocal sounds located

November 12, 2012
(Medical Xpress)—Although less than half the size of a walnut and weighing one gram, the brain of a songbird is fully capable of generating complex learned behaviors. Songbirds are one of the few groups of animals other ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
1 / 5 (1) Apr 02, 2013
Not to be confused with any label of conditioning from behaviorism, obviously "the details of their responses could be predicted with high accuracy." - Geffen

"It was possible to determine which aspects of the acoustic input best drove individual neurons. Remarkably, it turned out that the acoustic parameters that worked best in driving the neuronal responses corresponded to the statistics of the natural vocalizations rats produce."

Your correlations are above reproach and question.
You now want a mechanism that 'preps or primes' auditory neurons for all future response.
Described here:
http://medicalxpr...ain.html

So now you not only have your conclusion:

"... that neurons in the auditory cortex are specialized for processing and efficiently responding to natural and behaviorally relevant sounds."

You now know how, where, what and why specialization occurs.
Now with 99.99% prediction accuracy.

Whydening Gyre
3 / 5 (2) Apr 02, 2013
Kinda like building muscle... Interesting connection.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.