Researchers pinpoint brain mechanisms that make the auditory system sensitive to behaviorally relevant sounds

April 2, 2013

(Medical Xpress)—How do we hear? More specifically, how does the auditory center of the brain discern important sounds – such as communication from members of the same species – from relatively irrelevant background noise? The answer depends on the regulation of sound by specific neurons in the auditory cortex of the brain, but the precise mechanisms of those neurons have remained unclear. Now, a new study from the Perelman School of Medicine at the University of Pennsylvania has isolated how neurons in the rat's primary auditory cortex (A1) preferentially respond to natural vocalizations from other rats over intentionally modified vocalizations (background sounds). A computational model developed by the study authors, which successfully predicted neuronal responses to other new sounds, explained the basis for this preference.

The research is published in the Journal of Neurophysiology.

Rats communicate with each other mostly through ultrasonic vocalizations (USVs) beyond the range of human hearing. Although the existence of these USV conversations has been known for decades, "the acoustic richness of them has only been discovered in the last few years," said senior study author Maria N. Geffen, PhD, assistant professor of Otorhinolaryngology: at Penn. That acoustical complexity raises questions as to how the animal brain recognizes and responds to the USVs. "We set out to characterize the responses of to USVs and to come up with a model that would explain the mechanism that makes these neurons preferentially responsive to these relevant sounds."

Geffen and her colleagues obtained recordings of USVs from two rats kept together in a cage, then played the recordings to a separate group of male rats, while their neuronal responses were acquired and recorded. The researchers also used USV recordings that were modified in several ways, such as having background sounds filtered out and being played backwards and at different speeds to mimic unimportant . "We found that neurons in the respond strongly and selectively to the original ultrasonic vocalizations and not the transformed versions we created," says Geffen.

Using the data collected on the responses of A1 neurons to various USVs, the researchers developed a that could predict the activity of an individual neuron based on the pitch and duration of the USV. Geffen observes that "the details of their responses could be predicted with high accuracy." It was possible to determine which aspects of the acoustic input best drove individual neurons. Remarkably, it turned out that the acoustic parameters that worked best in driving the neuronal responses corresponded to the statistics of the natural rats produce.

The work makes clear for the first time, says Geffen, "the mechanisms of how the auditory system picks out behaviorally relevant sounds, such as same species communication signals, and processes them more effectively than less relevant sounds. This information is fundamental in understanding how sound perception helps animals survive. We conclude that neurons in the auditory cortex are specialized for processing and efficiently responding to natural and behaviorally relevant sounds."

Explore further: Rewired visual input to sound-processing part of the brain leads to compromised hearing

More information: jn.physiology.org/content/109/7/1912.abstract

Related Stories

Rewired visual input to sound-processing part of the brain leads to compromised hearing

August 22, 2012
Scientists at Georgia State University have found that the ability to hear is lessened when, as a result of injury, a region of the brain responsible for processing sounds receives both visual and auditory inputs.

Neural circuit in the songbird brain that encodes representation of learned vocal sounds located

November 12, 2012
(Medical Xpress)—Although less than half the size of a walnut and weighing one gram, the brain of a songbird is fully capable of generating complex learned behaviors. Songbirds are one of the few groups of animals other ...

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
1 / 5 (1) Apr 02, 2013
Not to be confused with any label of conditioning from behaviorism, obviously "the details of their responses could be predicted with high accuracy." - Geffen

"It was possible to determine which aspects of the acoustic input best drove individual neurons. Remarkably, it turned out that the acoustic parameters that worked best in driving the neuronal responses corresponded to the statistics of the natural vocalizations rats produce."

Your correlations are above reproach and question.
You now want a mechanism that 'preps or primes' auditory neurons for all future response.
Described here:
http://medicalxpr...ain.html

So now you not only have your conclusion:

"... that neurons in the auditory cortex are specialized for processing and efficiently responding to natural and behaviorally relevant sounds."

You now know how, where, what and why specialization occurs.
Now with 99.99% prediction accuracy.

Whydening Gyre
3 / 5 (2) Apr 02, 2013
Kinda like building muscle... Interesting connection.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.