Cell-permeable peptide shows promise for controlling cardiovascular disease

April 17, 2013

Atherosclerosis – sometimes called "hardening of the arteries" – is a leading cause of death and morbidity in Western countries. A cell-permeable peptide containing the NF-kB nuclear localization sequence (NLS) shows promise as a potential agent in controlling the development of atherosclerotic disease. This study is published in the May 2013 issue of The American Journal of Pathology.

Atherosclerosis is a of the arterial and vascular wall. The objective of many therapeutic compounds is to modulate atherogenesis – the process that leads to the formation of fatty tissue-containing plaques that stick to the cell wall. Numerous cellular and molecular inflammatory components are involved in the disease process, and uncontrolled activation of pro-inflammatory transcription factors, such as nuclear factor-kB (NF-kB), plays a significant role. Several NF-kB inhibitors are in phase II-III clinical trials against various inflammatory diseases, but most cardiovascular research is still in the preliminary laboratory experimental phase.

Investigators in Spain, the United States, the United Kingdom, and Germany studied the anti-inflammatory and atheroprotective effects of a cell-permeable peptide containing the NF-kB NLS. In vitro tests clearly established that NLS peptide blocks the nuclear import of activated NF-kB and inhibits NF-kB activation in . These findings were corroborated in vivo in ApoE , an experimental model relevant to human atherosclerosis. In these experiments, the mice were fed a high-fat diet and treated with either NLS peptide or vehicle (control group).

The results showed that systemic administration of NLS peptide reduced the nuclear NF-kB activity in vascular (VSMCs) and macrophages of aortic plaques of mice. More importantly, NLS peptide inhibited lesion development in mice either at the onset of atherosclerosis (early treatment) or after the development of advanced plaques (delayed treatment), without affecting serum cholesterol levels. The results also demonstrated that NLS peptide alters plaque composition and inflammation in atherosclerotic lesions.

"The NF-kB system is a crucial factor regulating the expression of genes in different steps of the atherosclerotic process, from early phases characterized by lipid modification, chemotaxis, adhesion of leukocytes, monocyte differentiation, foam cell formation, and inflammatory cytokine expression to more advanced lesions involving cell death, migration and proliferation of VSMCs, and fibrous cap formation," explained lead investigator Carmen Gomez-Guerrero, PhD, of the Renal and Vascular Inflammation Laboratory, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain.

"Our study demonstrates that targeting NF-kB nuclear translocation hampers inflammation and atherosclerosis development and identifies cell-permeable NLS peptide as a potential anti-atherosclerotic agent," she said. "These properties make cell-permeable NLS peptide a promising prevention/intervention strategy to inhibit inflammation in cardiovascular diseases."

Explore further: Stopping low back pain: Researchers discover molecular mechanism responsible for vertebral column degeneration

More information: "Peptide inhibitor of NF-ĸB translocation ameliorates experimental atherosclerosis," by Beñat Mallavia, Carlota Recio, Ainhoa Oguiza, Guadalupe Ortiz-Muñoz, Iolanda Lazaro, Virginia Lopez-Parra, Oscar Lopez-Franco, Susann Schindler, Reinhard Depping, Jesus Egido, and Carmen Gomez-Guerrero (DOI: dx.doi.org/10.1016/j.ajpath.2013.01.022). It appears in The American Journal of Pathology, Volume 182, Issue 5 (May 2013)

Related Stories

Stopping low back pain: Researchers discover molecular mechanism responsible for vertebral column degeneration

March 13, 2012
Italian researchers at the Catholic University of Sacred Heart in Rome found an important molecular mechanism responsible for low back pain and other acute vertebral problems like cervical axial pain, all due to aging and ...

A boost in microRNA may protect against sepsis and other inflammatory diseases

May 24, 2012
Acute inflammatory diseases, such as sepsis, as well as chronic inflammatory diseases like diabetes and arthritis, develop as a result of sustained inflammation of the blood vessel wall. Researchers at Brigham and Women's ...

Researchers discover molecular link between circadian clock disturbances and inflammatory diseases

August 1, 2012
Scientists have known for some time that throwing off the body's circadian rhythm can negatively affect body chemistry. In fact, workers whose sleep-wake cycles are disrupted by night shifts are more susceptible to chronic ...

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.