Study demonstrates effects of mutant IDH1 and IDH2 inhibitors in primary tumor models

April 4, 2013

Agios Pharmaceuticals announced today the publication of two articles in the journal Science by Agios scientists and their collaborators demonstrating the effects of the company's small molecule isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) mutant specific inhibitors in primary human tumor models. These data add to a growing body of scientific research demonstrating the significant promise of targeting mutant IDH1 and IDH2 enzymes as novel approaches to treating cancer.

"These papers represent the first publications to show the effects of inhibiting mutant IDH1 and IDH2 enzymes in patient-derived tumor samples, extending Agios' record of scientific leadership in cancer metabolism," said David Schenkein, M.D., at Agios. "While IDH mutations are genetically validated cancer targets, these findings provide further preclinical support that these mutations are driving disease, and appropriately targeted therapeutics can reverse the effects. Our IDH programs continue to produce promising results, and we are excited to advance toward clinical studies that will bring a potentially transformative to patients."

Tumors carrying IDH mutations are known to produce high levels of 2-HG, as shown originally by Agios scientists in Nature in 2009. In the first Science article, titled "Targeted inhibition of mutant IDH2 in induces cellular differentiation," Agios scientists show that cancer-associated IDH mutations may cause a block in to promote tumorigenesis. To elucidate the relationship between mutant , 2-HG levels and oncogenic state, Agios developed a mutant-selective IDH2 inhibitor. Primary samples of (AML) cells were derived from four patients with AML carrying the IDH2 mutation. Upon treatment with the inhibitor, differentiation of blast (leukemic) cells was observed. In a separate experiment in TF-1 cells, the inhibitor was able to restore the ability of the cells to differentiate upon stimulation with erythropoeitin. Each of these observations was correlated with dose-dependent reductions in the oncometabolite 2-HG, which is thought to block differentiation in leukemia cells harboring IDH mutations.

In the second article, "An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells," Agios researchers, Ingo K. Mellinghoff, M.D., of Memorial Sloan-Kettering Cancer Center, and colleagues from several institutions report that a selective mutant IDH1 inhibitor discovered at Agios blocked the ability of mutant IDH1 to produce 2-HG in an in vivo primary xenograft model, impairing the growth of patient-derived IDH1-mutant glioma (brain cancer) cells. Furthermore, reduction of 2-HG to near basal levels induced expression of genes involved in both astroctyic and oligodendrocyte differentiation.

These data suggest that targeted therapy with IDH mutant inhibitors could induce tumor cell differentiation and support clinical study of IDH1 and IDH2 mutant targeted agents for the treatment of AML and other cancers. Both articles were published online in the journal Science on April 4, 2013.

Explore further: Three studies find IDH enzyme mutations may alter activity leading to growth of cancer tumors

More information: "Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation," by F. Wang et al Science, 2013.
"An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells," by D. Rohle et al Science, 2013.

Related Stories

Three studies find IDH enzyme mutations may alter activity leading to growth of cancer tumors

February 16, 2012
(Medical Xpress) -- Three research teams have published papers in Nature, that together offer evidence suggesting that isocitrate dehydrogenase (IDH) enzyme mutations may play a role in altering activity that could have an ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.