Genomics may help ID organisms in outbreaks of serious infectious disease

April 9, 2013

Researchers have been able to reconstruct the genome sequence of an outbreak strain of Shiga-toxigenic Escherichia coli (STEC) using metagenomics (the direct sequencing of DNA extracted from microbiologically complex samples), according to a study in the April 10 issue of JAMA, a Genomics theme issue. The findings highlight the potential of this approach to identify and characterize bacterial pathogens directly from clinical specimens without laboratory culture.

"The of Shiga-toxigenic Escherichia coli, which struck Germany in May-June 2011, illustrated the effects of a bacterial epidemic on a wealthy, modern, industrialized society, with more than 3,000 cases and more than 50 deaths. During an outbreak, rapid and accurate pathogen identification and characterization is essential for the management of individual cases and of an entire outbreak. Traditionally, clinical bacteriology has relied primarily on laboratory isolation of bacteria in pure culture as a prerequisite to identification and characterization of an outbreak strain. Often, however, in vitro culture proves slow, difficult, or even impossible, and recognition of an outbreak strain can be difficult if it does not belong to a known variety or species for which specific and already exist," according to background information in the article. Metagenomics has been used in a clinical diagnostic setting to identify the cause of outbreaks of viral infection.

Nicholas J. Loman, M.B.B.S., Ph.D., of the University of Birmingham, England, and colleagues conducted a study to explore the potential of metagenomics to identify and characterize (by determining ) from an outbreak without the need for laboratory culture. For this retrospective investigation, 45 samples were selected from fecal specimens obtained from patients with diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany. Samples were subjected to sequencing (August-September 2012), followed by a 3-phase analysis (November 2012-February 2013).

In phase 1, a draft genome of the outbreak strain was constructed, using data obtained the HiSeq 2500 instrument in rapid-run mode. Outbreak-specific sequences were identified by subtracting sequences from the outbreak metagenome that were present in fecal samples from healthy individuals. In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify pathogens other than the outbreak strain.

"During phase 2, the outbreak strain genome was recovered from 10 samples at greater than 10-fold coverage and from 26 samples at greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in 27 of 40 STEC-positive samples (67 percent). In phase 3, sequences from Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered," the authors write.

"Using metagenomics, we have been able to recover a draft of the German STEC strain without the need for . We found that in most patients with STEC-positive samples, the outbreak strain of E coli accounted for a sizeable proportion of microbial sequences."

"In conclusion, these results illustrate the potential of metagenomics as an open-ended, culture-independent approach for the identification and characterization of bacterial pathogens during an outbreak of diarrheal disease. Challenges include speeding up and simplifying workflows, reducing costs, and improving diagnostic sensitivity, all of which are likely to depend in turn on improvements in sequencing technologies."

David A. Relman, M.D., of the Stanford University School of Medicine, Stanford, Calif., comments on the findings of this study in an accompanying editorial.

"Microbial genome and community sequence data are destined to affect clinical and public health decision making in a profound manner. However, clinician-investigators know that there remain many critical, clinically relevant questions that demand more than genome sequence data, requiring biological measurements and a deeper understanding of the ecological and clinical setting."

Explore further: EHEC 2011 outbreak: Scientists publish their prospective genomic characterization

More information: JAMA. 2013;309(14):1502-1510
JAMA. 2013;309(14):1531-1532

Related Stories

EHEC 2011 outbreak: Scientists publish their prospective genomic characterization

July 20, 2011
Scientists of the Medical Faculty of the University Munster and the University Hospital Munster in collaboration with scientists of the enterprise 'Life Technologies Corporation' were the first to release a draft genome sequence ...

Threat to United States from new European E. coli strain unclear

June 14, 2011
(Medical Xpress) -- Over the centuries, many unexpected things have come to the United States from Germany and caught on -- lager beer, sauerkraut, bratwurst and the Volkswagen Beetle are a few that come to mind -- but don't ...

DNA sequencing technology yields new insights into German E. coli pathogen

July 28, 2011
An international team of scientists has successfully employed single molecule, real-time (SMRT™) DNA sequencing technology from Pacific Biosciences of California, Inc. (NASDAQ: PACB) to provide valuable insights into ...

BGI sequences genome of the deadly E. coli in Germany and reveals new super-toxic strain

June 2, 2011
The recent outbreak of an E. coli infection in Germany has resulted in serious concerns about the potential appearance of a new deadly strain of bacteria. In response to this situation, and immediately after the reports of ...

Recommended for you

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers find genes may 'snowball' obesity

December 7, 2017
There are nine genes that make you gain more weight if you already have a high body mass index, McMaster University researchers have found.

Gene therapy shows promise against blood-clotting disease

December 7, 2017
Gene therapy has freed 10 men from nearly all symptoms of hemophilia for a year so far, in a study that fuels hopes that a one-time treatment can give long-lasting help and perhaps even cure the blood disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.