Identification of specific genetic variants associated with common eye disorders could improve treatment and prevention

April 24, 2013
Identification of specific genetic variants associated with common eye disorders could improve treatment and prevention
Keratoconus causes distortion of the cornea and can lead to blindness. Thin corneas are an indication of a risk of developing the disease. Credit: Dorling Kindersley RF/Thinkstock

The eye is covered by a clear and protective layer called the cornea, and abnormal thickness of the cornea can result in eye disease. An international research team including Chiea Chuen Khor of the A*STAR Genome Institute of Singapore has pinned down 27 genetic variations that are strongly associated with a heritable trait known as central corneal thickness (CCT). Some of these variations are also directly linked to eye diseases, so the findings may lead to better prevention and treatment.

Extreme thinning of the cornea is associated with rare eye disorders, whereas milder thinning is linked to more common problems. These include primary (), which is the second leading cause of blindness worldwide, and a progressive called keratoconus, which affects 1 in 2,000 people and causes distortion of the cornea and visual impairment (see image).

In several previous studies, researchers investigated the genetic basis for CCT by comparing the of individuals with their genetic fingerprints. This revealed 11 genetic variations linked to CCT, but with varying levels of certainty; the new study solidified these findings and uncovered further associated genetic variations.

Khor and co-workers achieved this by collecting and re-analyzing the data from 13 previous studies as a whole. They identified a total of 27 genetic variations that are strongly linked to CCT; 16 of these had previously eluded detection. Furthermore, the researchers found that six of these variations indicated a risk of developing , with one of the six also linked to POAG.

The new study identified a higher number of genetic variations associated with eye disease than previous ones because it included data from over 20,000 individuals. "[Our study] is three to four times the size of previous studies, and it combines data from Asians and Europeans for the first time," explains Khor. "As such, the results are correspondingly rich in detail."

The team's findings not only provide greater insight into the genetic basis for corneal thinning, but also demonstrate that associated genetic variations increase the risk of common eye diseases. According to Khor, this could open up new avenues for dealing with these diseases.

"We now know the biological targets that are relevant for disease to occur, and some of these gene targets may be amenable to drug modifications," he says. "For prevention, individuals [who carry] multiple risk variants, and who are deemed to be at very high risk of disease, can be screened earlier to intervene before blindness occurs."

Explore further: Study finds genetic collagen link to corneal thickness, disease

More information: Lu, Y., Vitart, V., Burdon, K. P., Khor, C. C., Bykhovskaya, Y. et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nature Genetics 45, 155–163 (2013).

Related Stories

Study links genes to common forms of glaucoma

April 26, 2012

Results from the largest genetic study of glaucoma, a leading cause of blindness and vision loss worldwide, showed that two genetic variations are associated with primary open angle glaucoma (POAG), a common form of the disease. ...

Recommended for you

New insights on triggering muscle formation

April 26, 2017

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a previously unrecognized step in stem cell-mediated muscle regeneration. The study, published in Genes and Development, provides new ...

Risk of obesity influenced by changes in our genes

April 25, 2017

These changes, known as epigenetic modifications, control the activity of our genes without changing the actual DNA sequence. One of the main epigenetic modifications is DNA methylation, which plays a key role in embryonic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.