Further potential insight into the complex neuropathology of Down's syndrome

April 8, 2013
Further potential insight into the complex neuropathology of Down’s syndrome
sorting nexin-27 [SNX27].

(Medical Xpress)—Researchers at the University of Bristol have revealed new insight into the function of a key protein attributed to impaired learning and memory in Down's syndrome. The findings, published online in Nature Cell Biology, offer further molecular insight into how the reduced level of this key protein termed 'sorting nexin-27' [SNX27] may contribute to learning and memory problems associated with Down's syndrome.

The Bristol-based team now reveal how SNX27 forms the core component of an ancient protein complex which functions to control the abundance of a select group of proteins at the surface of cells. Included among these proteins are numerous transporters that regulate the cell's ability to take up various nutrients, including glucose and such as zinc and copper. In cells lacking SNX27, the level of these transporters is reduced and the cell's ability to take up nutrients is adversely perturbed.

Peter Cullen, Professor of Biochemistry from the University's School of Biochemistry and senior author of the Wellcome Trust-funded study, said: "Besides the previously recognised role of SNX27 in regulating the synaptic activity of neurones, our study suggests that the lack of SNX27 expression observed in Down's syndrome may also lead to a reduced metabolic activity that may adversely affect and cognitive function.

"Further analysis of the effect of reduced SNX27 expression on the synaptic and metabolic activity of specific neuronal populations will certainly provide much needed molecular insight into the complex neuropathology of Down's syndrome as well as other neurological conditions."

Explore further: Researchers unravel molecular roots of Down syndrome

More information: Steinberg F. et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport, Nature Cell Biology.

Related Stories

Researchers unravel molecular roots of Down syndrome

March 24, 2013
Sanford-Burnham researchers discover that the extra chromosome inherited in Down syndrome impairs learning and memory because it leads to low levels of SNX27 protein in the brain.

New mechanism for long-term memory formation discovered

March 25, 2013
UC Irvine neurobiologists have found a novel molecular mechanism that helps trigger the formation of long-term memory. The researchers believe the discovery of this mechanism adds another piece to the puzzle in the ongoing ...

Study shows loss of key estrogen regulator may lead to metabolic syndrome and atherosclerosis

September 6, 2011
UCLA researchers demonstrated that loss of a key protein that regulates estrogen and immune activity in the body could lead to aspects of metabolic syndrome, a combination of conditions that can cause Type 2 diabetes, atherosclerosis ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.