Researchers identify novel approach to create red blood cells, platelets in vitro

May 30, 2013, Boston University Medical Center

A study led by Boston University School of Medicine has identified a novel approach to create an unlimited number of human red blood cells and platelets in vitro. In collaboration with Boston University School of Public Health (BUSPH) and Boston Medical Center (BMC), the researchers differentiated induced pluripotent stem (iPS) cells into these cell types, which are typically obtained through blood donations. This finding could potentially reduce the need for blood donations to treat patients requiring blood transfusions and could help researchers examine novel therapeutic targets to treat a variety of diseases, including sickle cell disease.

Published online in the journal Blood, the study was led by George J. Murphy, PhD, assistant professor of medicine at BUSM and co-director of the Center for Regenerative Medicine (CReM) at Boston University and BMC and performed in collaboration with David Sherr, PhD, a professor in environmental health at BUSM and BUSPH.

iPS cells are derived by reprogramming into a primitive stem cell state that are capable of differentiating into different types of cells. iPS cells can be generated from mature , such as skin or blood cells, allowing for the development of patient-specific cells and tissues that should not elicit inappropriate immune responses, making them a powerful tool for biological research and a resource for regenerative medicine.

In this study, the iPS cells were obtained from the CReM iPS Cell Bank. The cells were exposed to growth factors in order to coax them to differentiate into red blood cells and platelets using a patented technology. These stem cells were examined in depth to study how blood cells form in order to further the understanding of how this process is regulated in the body.

In their new approach, the team added compounds that modulate the aryl hydrocarbon receptor (AhR) pathway. Previous research has shown this pathway to be involved in the promotion of cancer cell development via its interactions with environmental toxins. In this study, however, the team noted an exponential increase in the production of functional red blood cells and platelets in a short period of time, suggesting that AhR plays an important role in normal blood cell development.

"This finding has enabled us to overcome a major hurdle in terms of being able to produce enough of these cells to have a potential therapeutic impact both in the lab and, down the line, in patients," said Murphy. "Additionally, our work suggests that AhR has a very important biological function in how blood cells form in the body."

Blood transfusion is an indispensable cell therapy and the safety and adequacy of the blood supply is an international concern. In 2009, the National Blood Data Resource Center reported that blood-banking institutions collected more than 17 million units of whole blood and red blood cells and US hospitals were transfusing more than 15 million patients annually. Given the variety of blood types, there are – even in developed countries – chronic shortages of blood for some groups of patients. Sporadic shortages of blood also can occur in association with natural or man-made disasters. The number of blood transfusions is expected to increase in people over the age of 60 and could lead to an insufficient blood supply by 2050.

"Patient-specific red and platelets derived from iPS cells, which would solve problems related to immunogenicity and contamination, could potentially be used therapeutically and decrease the anticipated shortage and the need for ," added Murphy.

iPS-derived cells have great potential to lead to a variety of novel treatments for diseases given that they can be used to construct disease models in a lab. The iPS-derived could be used by researchers examining malaria and sickle cell anemia while the iPS-derived platelets could be used to explore cardiovascular disease and treatments for blood clotting disorders.

Explore further: New patient-friendly way to make stem cells for fight against heart disease

More information: bloodjournal.hematologylibrary … 2-11-466722.abstract

Related Stories

New patient-friendly way to make stem cells for fight against heart disease

November 29, 2012
funded by the British Heart Foundation (BHF), Medical Research Council (MRC) and Wellcome Trust – have today published a patient-friendly and efficient way to make stem cells out of blood, increasing the hope that scientists ...

Study uses stem cells to boost red blood cell production

August 7, 2012
(HealthDay) -- Using human stem cells, scientists have developed methods to boost the production of red blood cells, according to a new study.

Scientists create personalized bone substitutes from skin cells

May 6, 2013
A team of New York Stem Cell Foundation (NYSCF) Research Institute scientists report today the generation of patient-specific bone substitutes from skin cells for repair of large bone defects. The study, led by Darja Marolt, ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
not rated yet May 31, 2013
Will there be artificial markers if indistinguishability exists between the red blood cells and platelets derived from iPS cells and the red blood cells and platelets formed within the body?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.