New discovery in fight against deadly meningococcal disease

May 23, 2013, Griffith University

Professor Michael Jennings, Deputy Director of the Institute for Glycomics at Griffith University, was part of an international team that discovered the previously unknown pathway of how the bacterium colonizes people.

"Neisseria is an important that can cause rapidly progressing, life threatening meningitis and meningococcal in humans," Professor Jennings said.

"Until now we have not known how it attaches to the . It has been a long-standing mystery how it attaches to the airway to colonise"

People can be carriers of the bug and not get any symptoms, while some people progress to . To understand why, we need to know the detail of how the colonises the airway. Now that the pathway has been identified we can study this process to understand how invasive disease occurs. This is especially important considering the rapidly progressing and serious outcomes of meningococcal disease.

"If you understand how the bug first attaches and how it first signals its attachment then we may identify new or treatment procedures," Professor Jennings said.

The findings were published Friday in the highly regard PLOS Pathogens journal as featured research "Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells."

The paper states: There is no fully protective vaccine against this pathogen in current use and the key processes that dictate the transition from harmless carriage of the bacterium in the airway (the case for the vast majority of colonised hosts) to invasive disease are largely undefined. A key missing link in this organism's interaction with the human host is the identity of the receptor that is the first point of contact for the organism within the airway.

Professor Jennings said the receptor is used by a range of airway pathogens and the bacterium mimics a human structure to attach to this receptor.

"It's not actually protein that attaches to the receptor but decorations on the protein that are known as post-translational modifications. One of these is a sugar structure, which of course is of great interest to our work here at Glycomics," he said.

The Institute of Glycomics is a world leader in the study of glycans and carbohydrates (sugars) and how they behave in terms of disease prevention and cure.

Explore further: Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

Related Stories

Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

January 24, 2013
Researchers at the Paris Cardiovascular Research Center (PARCC) have shown how adhesion of Neisseria (N.) meningitidis to human microvessels in a humanized mouse model leads to the characteristic cutaneous lesions of meningococcal ...

How the bacterium that plays role in spread of MRSA colonises the human nose

January 28, 2013
A collaboration between researchers at the School of Biochemistry and Immunology and the Department of Microbiology at Trinity College Dublin has identified a mechanism by which the bacterium Staphylococcus aureus (S. aureus) ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.