New discovery in fight against deadly meningococcal disease

May 23, 2013

Professor Michael Jennings, Deputy Director of the Institute for Glycomics at Griffith University, was part of an international team that discovered the previously unknown pathway of how the bacterium colonizes people.

"Neisseria is an important that can cause rapidly progressing, life threatening meningitis and meningococcal in humans," Professor Jennings said.

"Until now we have not known how it attaches to the . It has been a long-standing mystery how it attaches to the airway to colonise"

People can be carriers of the bug and not get any symptoms, while some people progress to . To understand why, we need to know the detail of how the colonises the airway. Now that the pathway has been identified we can study this process to understand how invasive disease occurs. This is especially important considering the rapidly progressing and serious outcomes of meningococcal disease.

"If you understand how the bug first attaches and how it first signals its attachment then we may identify new or treatment procedures," Professor Jennings said.

The findings were published Friday in the highly regard PLOS Pathogens journal as featured research "Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells."

The paper states: There is no fully protective vaccine against this pathogen in current use and the key processes that dictate the transition from harmless carriage of the bacterium in the airway (the case for the vast majority of colonised hosts) to invasive disease are largely undefined. A key missing link in this organism's interaction with the human host is the identity of the receptor that is the first point of contact for the organism within the airway.

Professor Jennings said the receptor is used by a range of airway pathogens and the bacterium mimics a human structure to attach to this receptor.

"It's not actually protein that attaches to the receptor but decorations on the protein that are known as post-translational modifications. One of these is a sugar structure, which of course is of great interest to our work here at Glycomics," he said.

The Institute of Glycomics is a world leader in the study of glycans and carbohydrates (sugars) and how they behave in terms of disease prevention and cure.

Explore further: Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

Related Stories

Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

January 24, 2013
Researchers at the Paris Cardiovascular Research Center (PARCC) have shown how adhesion of Neisseria (N.) meningitidis to human microvessels in a humanized mouse model leads to the characteristic cutaneous lesions of meningococcal ...

How the bacterium that plays role in spread of MRSA colonises the human nose

January 28, 2013
A collaboration between researchers at the School of Biochemistry and Immunology and the Department of Microbiology at Trinity College Dublin has identified a mechanism by which the bacterium Staphylococcus aureus (S. aureus) ...

Recommended for you

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.