Fast and painless way to better mental arithmetic? Yes, there might actually be a way

May 16, 2013

In the future, if you want to improve your ability to manipulate numbers in your head, you might just plug yourself in. So say researchers who report in the Cell Press journal Current Biology on May 16 on studies of a harmless form of brain stimulation applied to an area known to be important for math ability.

"With just five days of cognitive training and noninvasive, painless , we were able to bring about long-lasting improvements in cognitive and brain functions," says Roi Cohen Kadosh of the University of Oxford.

Incredibly, the improvements held for a period of six months after training. No one knows exactly how this relatively new method of stimulation, called transcranial random noise stimulation (TRNS), works. But the researchers say the evidence suggests that it allows the brain to work more efficiently by making neurons fire more synchronously.

Cohen Kadosh and his colleagues had shown previously that another form of brain stimulation could make people better at learning and processing new numbers. But, he says, TRNS is even less perceptible to those receiving it. TRNS also has the potential to help even more people. That's because it has been shown to improve mental arithmetic—the ability to add, subtract, or multiply a string of numbers in your head, for example—not just new number learning. Mental arithmetic is a more complex and challenging task, which more than 20 percent of people struggle with.

Ultimately, Cohen Kadosh says, with better integration of neuroscience and education, this line of study could really help humans reach our cognitive potential in math and beyond. It might also be of particular help to those suffering with neurodegenerative illness, stroke, or learning difficulties.

"Maths is a highly complex cognitive faculty that is based on a myriad of different abilities," Cohen Kadosh says. "If we can enhance mathematics, therefore, there is a good chance that we will be able to enhance simpler cognitive functions."

Explore further: Stimulating the brain to improve speech, memory, numerical abilities

More information: Current Biology, Snowball et al.: "Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation." dx.doi.org/10.1016/j.cub.2013.04.045

Related Stories

Stimulating the brain to improve speech, memory, numerical abilities

April 2, 2012
One of the most frustrating challenges for some stroke patients can be the inability to find and speak words even if they know what they want to say. Speech therapy is laborious and can take months. New research is seeking ...

The ethics of brain boosting

January 26, 2012
(Medical Xpress) -- The idea of a simple, cheap and widely available device that could boost brain function sounds too good to be true.

Synaesthesia linked to a hyper-excitable brain

November 18, 2011
(Medical Xpress) -- ‘Hyper-excitability’ in regions of the brain may underlie synaesthesia, an unusual condition where some people experience a ‘blending of the senses’, Oxford University researchers suggest.

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Brain training computer game improves some cognitive functions relatively quickly

January 11, 2012
The brain training computer game "Brain Age" can improve executive functions and processing speed, even with a relatively short training period, but does not affect global cognitive status or attention, according to a study ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

arq
not rated yet May 19, 2013
Does this come at the expense of other cognitive abilities?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.