New gene delivery method: Magnetic nanoparticles

May 30, 2013, Federation of American Societies for Experimental Biology

Stent angioplasty saves lives, but there often are side effects and complications related to the procedure, such as arterial restenosis and thrombosis. In the June 2013 issue of The FASEB Journal, however, scientists report that they have discovered a new nanoparticle gene delivery method that may overcome current limitations of gene therapy vectors and prevent complications associated with the stenting procedure. Specifically, this strategy uses stents as a platform for magnetically targeted gene delivery, where genes are moved to cells at arterial injury locations without causing unwanted side effects to other organs. Additionally, magnetic nanoparticles developed and characterized in the study also protect genes and help them reach their target in active form, which also is one of the key challenges in any gene therapy.

"This study can help address a number of barriers to translation of experimental gene therapeutic approaches to clinical practice," said Michael Chorny, Ph.D., a researcher involved in the work from the Division of Cardiology at the Abramson Pediatric Research Center at The Children's Hospital of Philadelphia in Pennsylvania. "Bringing gene therapy closer to clinical use is a step toward developing safer and more effective ways for treating cardiovascular disease."

To make this technique possible, Chorny and colleagues used in vitro to demonstrate the ability to effectively deliver genes using biocompatible nanoparticles and without causing adverse effects. Although effective gene transfer in these cells has been difficult to achieve historically, this study demonstrated that magnetically guided "gene-impregnated" nanoparticles delivered their cargo effectively, especially compared to conventional gene delivery vectors. Next, researchers explored magnetically targeted gene delivery by applying these nanoparticles to stented arteries in rats. The nanoparticle-mediated expression of stent-targeted genes was shown to be greatly enhanced in treated animals when compared to control groups treated with nanoparticles without using the magnetic conditions, or with an equivalent dose of a conventional vector. Genes delivered using the magnetically targeted nanoparticles were also expressed at considerably higher levels in the stented arteries compared to other organs and tissues.

"This approach is novel and exciting, and goes to show that investments in basic science across disciplines pay off in time," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "When the first were developed and when the first correctable human disease gene was identified, no one could have ever known that these two advances would come together in a way that might one-day save lives."

Explore further: Researchers show that lipid nanoparticles are ideal for delivering genes and drugs

More information: Michael Chorny, Ilia Fishbein, Jillian E. Tengood, Richard F. Adamo, Ivan S. Alferiev, and Robert J. Levy. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J June 2013 27:2198-2206; doi:10.1096/fj.12-224659

Related Stories

Researchers show that lipid nanoparticles are ideal for delivering genes and drugs

February 28, 2013
Researchers from Basque Public University are using nanotechnology to develop new formulations that can be applied to drugs and gene therapy. Specifically, they are using nanoparticles to design systems for delivering genes ...

Nanoparticles boost therapeutic potential of siRNA drugs

April 10, 2013
New classes of drugs that can silence specific genes, such as small interfering RNAs (siRNAs), offer great therapeutic potential. But the specific delivery of siRNAs to target cells to exert their effects remains a significant ...

An economical, effective and biocompatible gene therapy strategy promotes cardiac repair

July 6, 2012
Dr Changfa Guo, Professor Chunsheng Wang and their co-investigators from Zhongshan hospital Fudan University, Shanghai, China have established a novel hyperbranched poly(amidoamine) (hPAMAM) nanoparticle based hypoxia regulated ...

Novel treatment approach for bladder pain using a herpes simplex virus vector reported

March 14, 2013
Severe chronic pain associated with conditions such as bladder pain syndrome/interstitial cystitis often require the use of opioid medication, with the risk of dependency and serious adverse reactions. An alternative treatment ...

Recommended for you

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.