New mouse model confirms how type 2 diabetes develops

May 3, 2013

Researchers at Lund University in Sweden have developed a new mouse model that answers the question of what actually happens in the body when type 2 diabetes develops and how the body responds to drug treatment. Long-term studies of the middle-aged mouse model will be better than previous studies at confirming how drugs for type 2 diabetes function in humans.

"The animal models for studies that have previously existed have not been optimal because they use young mice. Our idea was to create a model that resembles the situation in the development of type 2 diabetes in humans. We generally get the disease in middle age when we start to put on weight and live a more sedentary, and more stressful, life. Our new middle-aged mouse model has enabled us to study long-term of the development and treatment of type 2 diabetes in a completely new way", said Bilal Omar, one of the researchers behind the study.

What the Lund researchers have done is to feed normal mice fatty food over a long period from the age of eight months, i.e. middle age, until the end of their natural lives at the age of two. The mice become overweight, and develop high and reduced , as expected before the onset of type 2 diabetes.

"Throughout the period we were able to study the process that leads to the development of type 2 diabetes with a lifestyle like that of people predisposed to the condition", said Bilal Omar.

In the study, the researchers could confirm that lead to inflammation in the islets of Langerhans in the pancreas, which produce insulin. Researchers have seen inflammation in the islets in people with type 2 diabetes, but in Bilal Omar's view, it is only with the new that it can really be confirmed. Inflammation in these islets is an important risk factor for type 2 diabetes.

"What was so interesting and exciting was that the mice that were treated with DPP-4 inhibitors, a class of drugs used for type 2 diabetes, did not develop inflammation and they maintained good insulin production. They were still obese, but had normal blood sugar, were otherwise healthy and lived longer", said Bilal Omar.

Researchers have worked for decades and on many fronts to understand the causes and course of diabetes. Models of different diseases are therefore an important tool for the development of new and better drugs, and a requirement to develop the best possible drugs is to understand what is happening on a physiological level.

"The goal is to design drugs and treatments which, if they can't cure the disease, can at least give the patient a better quality of life for several years", said Bilal Omar.

"Another aspect of our findings is that the inflammation in the islets was caused by a high-fat diet. Even if it is too early to draw parallels with the diet of humans, it makes it doubtful whether a high-fat diet over a long period should be recommended, as in the LCHF diet", said Professor Bo Ahrén, another of the researchers behind the study.

Explore further: New inflammation hormone link may pave way to study new drugs for Type 2 diabetes

More information: Omar, B. et al. Enhanced β-cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase 4 inhibitor vildagliptin in an advanced age diet induced obesity mouse model, Diabetologia, May 2013. link.springer.com/article/10.1 … 07/s00125-013-2927-8

Related Stories

New inflammation hormone link may pave way to study new drugs for Type 2 diabetes

May 15, 2012
A new link between obesity and type 2 diabetes found in mice could open the door to exploring new potential drug treatments for diabetes, University of Michigan Health System research has found.

Could a drug reverse Type 2 diabetes?

September 23, 2011
Australian researchers have isolated a ‘master gene’ that controls Type 2 diabetes and say drugs that prevent or reverse the condition by switching off the gene may be as little as five years away

Mouse study offers clues to obesity-diabetes link

December 6, 2012
(HealthDay)—Obesity and type 2 diabetes are clearly intertwined, but researchers say they've found a way to weaken the connection between the two—at least in mice.

Research team tests alternative approach to treating diabetes

June 9, 2011
In a mouse study, scientists at Mayo Clinic Florida have demonstrated the feasibility of a promising new strategy for treating human type 2 diabetes, which affects more than 200 million people worldwide.

Low testosterone levels could raise diabetes risk for men

May 4, 2012
Low levels of testosterone in men could increase their risk of developing diabetes, a study suggests.

Recommended for you

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

Immune system killer cells increase risk of diabetes

July 6, 2017
More than half of the German population is obese. One effect of obesity is to chronically activate the immune system, placing it under continuous stress. Researchers in Jens Brüning's team at the Max-Planck-Institute for ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

neversaidit
not rated yet May 03, 2013
this is such bullshit.
http://www.cdc.go...04a3.htm

feeding mice fatty diet is like feeding inactive humans high carb diet.
"Even if it is too early to draw parallels with the diet of humans, it makes it doubtful whether a high-fat diet over a long period should be recommended, as in the LCHF diet"
*In nature, mice are largely herbivores, consuming any kind of fruit or grain from plants.*
obviously high fat diet will screw them up. humans have *not* evolved eating high-carb diets!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.