Small molecule could have big impact on cancer

May 28, 2013

Dr. Jung-Mo Ahn, associate professor of chemistry at The University of Texas at Dallas, has designed and synthesized a novel small molecule that might become a large weapon in the fight against prostate cancer.

In a study published online May 28 in the journal Nature Communications, Ahn and his colleagues at UT Southwestern Medical Center describe the of the molecule, as well as that show its effectiveness at blocking the cancer-promoting function of proteins called androgen receptors.

Androgen receptors are found inside cells and have complex surfaces with multiple "docking points" where various proteins can bind to the receptor. Each docking point has a unique shape, so only a correctly shaped molecule will fit.

, such as testosterone, are the primary that bind to androgen . Such binding sets off a chain of events that activates several different processes in the human body, including stimulating the development and maintenance of male characteristics.

Looking for a new approach to battle , Ahn and his colleagues keyed in on blocking a critical docking point on the .

"When a tumor is trying to grow, activation of this location provides what the tumor needs," Ahn said. "There are other surfaces on the androgen receptor that are free to continue working with their respective proteins and to continue functioning. We sought to block only one set of interactions that contribute to prostate cancer growth. That's why we thought our approach might lead to potent efficacy with fewer side effects."

Using computer-assisted , Ahn designed a helix-mimicking small molecule that fits precisely into a pocket on the androgen receptor that is associated with prostate cancer. Collaborating with senior study author Dr. Ganesh Raj, associate professor of urology at UT Southwestern and a specialist in treating urologic cancers, the researchers tested the compound in animal and isolated human tissue. Without exhibiting noticeable toxicity, the compound prevented the androgen receptor from recruiting its protein partners and it blocked the growth of prostate cancer cells.

"We have shown that our molecule binds very tightly, targeting the androgen receptor with very high affinity," Ahn said. "We also have confirmed that it inhibits androgen function in these cells, which is a promising finding for drug development. We showed that it does work through these mechanisms, and it is as effective in inhibiting the proliferation of prostate cancer cells as other compounds currently in clinical trials."

Ahn plans to continue his research to better understand how the small molecule and related compounds he developed work against cancer on a molecular level. He said much work is left to do before any potential drugs or treatment might be developed, but added "this is an exciting start."

About 239,000 men are expected to be diagnosed with prostate cancer in the U.S. in 2013 and about 30,000 will die of the disease, according to the American Cancer Society.

Explore further: Researchers identify novel class of drugs for prostate cancers

Related Stories

Researchers identify novel class of drugs for prostate cancers

May 28, 2013
A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

Study identifies new prostate cancer drug target

February 6, 2012
Research led by Wanguo Liu, PhD, Associate Professor of Genetics at LSU Health Sciences Center New Orleans, has identified a new protein critical to the development and growth of prostate cancer. The findings are published ...

How some prostate tumors resist treatment—and how it might be fixed

March 18, 2013
Hormonal therapies can help control advanced prostate cancer for a time. However, for most men, at some point their prostate cancer eventually stops responding to further hormonal treatment. This stage of the disease is called ...

Noninvasive assay monitored treatment response in patients with metastatic prostate cancer

October 23, 2012
Deciding the ideal treatment for patients with metastatic prostate cancer that stops responding to initial therapy could be guided by certain analyses of cancer cells isolated from the patients' blood, according to data published ...

Mushroom-supplemented soybean extract shows therapeutic promise for advanced prostate cancer

February 20, 2013
A natural, nontoxic product called genistein-combined polysaccharide, or GCP, which is commercially available in health stores, could help lengthen the life expectancy of certain prostate cancer patients, UC Davis researchers ...

Researchers find new culprit in castration-resistant prostate cancer

December 13, 2012
Scientists at Dana-Farber Cancer Institute have discovered a molecular switch that enables advanced prostate cancers to spread without stimulation by male hormones, which normally are needed to spur the cancer's growth. They ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.