A second amyloid may play a role in Alzheimer's disease, researchers find

June 27, 2013, UC Davis

A protein secreted with insulin travels through the bloodstream and accumulates in the brains of individuals with type 2 diabetes and dementia, in the same manner as the amyloid beta Αβ plaques that are associated with Alzheimer's disease, a study by researchers with the UC Davis Alzheimer's Disease Center has found.

The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's , as well as combined deposits of amylin and plaques, suggesting that amylin is a second amyloid as well as a new for age-related and Alzheimer's.

"We've known for a long time that diabetes hurts the brain, and there has been a lot of speculation about why that occurs, but there has been no conclusive evidence until now," said UC Davis Alzheimer's Disease Center Director Charles DeCarli.

"This research is the first to provide clear evidence that amylin gets into the brain itself and that it forms plaques that are just like the amyloid beta that has been thought to be the cause of Alzheimer's disease," DeCarli said. "In fact, the amylin looks like the amyloid beta protein, and they both interact. That's why we're calling it the second amyloid of Alzheimer's disease."

"Amylin deposition in the brain: A second amyloid in Alzheimer's disease?" is published online in the Annals of Neurology.

Type 2 diabetes is a chronic metabolic disorder that increases the risk for cerebrovascular disease and dementia, a risk that develops years before the onset of clinically apparent diabetes. Its incidence is far greater among people who are obese and insulin resistant.

Amylin, or islet amyloid , is a hormone produced by the that circulates in the with insulin and plays a critical role in glycemic regulation by slowing gastric emptying, promoting satiety and preventing post-prandial spikes in . Its deposition in the pancreas is a hallmark of .

When over-secreted, some proteins have a higher propensity to stick to one another, forming small aggregates, called oligomers, fibrils and amyloids. These types of proteins are called amyloidogenic and include amylin and ??. There are about 28 amyloidogenic proteins, each of which is associated with diseases.

The study was conducted by examining from individuals who fell into three groups: those who had both diabetes and dementia from cerebrovascular or Alzheimer's disease; those with Alzheimer's disease without diabetes; and age-matched healthy individuals who served as controls.

The research found numerous amylin deposits in the gray matter of the diabetic patients with dementia, as well as in the walls of the in their brains, suggesting amylin influx from blood circulation. Surprisingly, the researchers also found amylin in the brain tissue of individuals with Alzheimer's who had not been diagnosed with diabetes; they postulate that these individuals may have had undiagnosed resistance. They did not find amylin deposits in the brains of the healthy control subjects.

"We found that the amylin deposits in the brains of people with dementia are both independent of and co-located with the A?, which is the suspected cause of Alzheimer's disease," said Florin Despa, assistant professor-in-residence in the UC Davis Department of Pharmacology. "It is both in the walls of the blood vessels of the brain and also in areas remote from the blood vessels.

"It is accumulating in the brain and we found signs that amylin is killing neurons similar to ??," he continued. "And that might be the answer to the question of 'What makes obese and type 2 diabetes patients more prone to developing dementia?'"

The researchers undertook the investigation after Despa and his colleagues found that amylin accumulates in the blood vessels and muscle of the heart. From this evidence, he hypothesized that the same thing might be happening in the brain. To test the hypothesis he received a pilot research grant through the Alzheimer's Disease Center.

The research was conducted using tissue from the brains of individuals over 65 donated to the UC Davis Alzheimer's Disease Center: 15 patients with Alzheimer's disease and type 2 diabetes; 14 Alzheimer's disease patients without diabetes; and 13 healthy controls. A series of tests, including Western blot, immunohistochemistry and ELISA (enzyme-linked immunosorbent assay) were used to test amylin accumulation in specimens from the temporal cortex.

In contrast with the healthy brains, the brain tissue infiltrated with amylin showed increased interstitial spaces, cavities within the tissue, sponginess, and blood vessels bent around amylin accumulation sites.

Despa said that the finding may offer a therapeutic target for drug development, either by increasing the rate of amylin elimination through the kidneys, or by decreasing its rate of oligomerization and deposition in diabetic patients.

"If we're smart about the treatment of pre-, a condition that promotes increased amylin secretion, we might be able to reduce the risk of complications, including Alzheimer's and dementia," Despa said.

Explore further: New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

Related Stories

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Pancreatic hormone linked with severe heart disease in obese and diabetic patients

February 16, 2012
Severe heart damage in people who are obese and diabetic is linked with a pancreatic hormone called amylin, UC Davis researchers have found.

Type II diabetes and the Alzheimer's connection

February 1, 2013
A research team in Israel has devised a novel approach to identifying the molecular basis for designing a drug that might one day decrease the risk diabetes patients face of developing Alzheimer's disease. The team will present ...

Clue to cause of Alzheimer's dementia found in brain samples

October 22, 2012
Researchers at Washington University School of Medicine in St. Louis have found a key difference in the brains of people with Alzheimer's disease and those who are cognitively normal but still have brain plaques that characterize ...

Alzheimer's brain change measured in humans

June 12, 2013
Scientists at Washington University School of Medicine in St. Louis have measured a significant and potentially pivotal difference between the brains of patients with an inherited form of Alzheimer's disease and healthy family ...

Recommended for you

Exercise may delay cognitive decline in people with rare Alzheimer's disease

September 25, 2018
For individuals carrying a genetic mutation that causes Alzheimer's disease, engaging in at least 2.5 hours of physical activity per week may have beneficial effects on markers of Alzheimer's disease brain changes and may ...

A biomarker in the brain's circulation system may be Alzheimer's earliest warning

September 24, 2018
USC scientists say Alzheimer's could be diagnosed earlier if scientists focus on an early warning within the brain's circulation system.

In landmark study, doctors say test identifies people most likely to get Alzheimer's

September 24, 2018
The beginning was the worst. It frustrated Janet Parkerson when her father started to forget what he had done that day or the day before.

Study clarifies ApoE4's role in dementia

September 20, 2018
ApoE4, a protein linked to both Alzheimer's disease and a form of dementia caused by damage of blood vessels in the brain, increases the risk of cognitive impairment by reducing the number and responsiveness of blood vessels ...

Machine learning IDs markers to help predict Alzheimer's

September 19, 2018
Nearly 50 million people worldwide have Alzheimer's disease or another form of dementia. These irreversible brain disorders slowly cause memory loss and destroy thinking skills, eventually to such an extent that self-care ...

Discovery could explain failed clinical trials for Alzheimer's, and provide a solution

September 19, 2018
Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trials have failed. The study also identifies a clinically ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.