Helping to restore balance after inner ear disorder

June 13, 2013

Many disorders of the inner hear which affect both hearing and balance can be hugely debilitating and are currently largely incurable. Cochlear implants have been used for many years to replace lost hearing resulting from inner ear damage. However, to date, there has not been an analogous treatment for balance disorders resulting from inner ear disease. One potential new treatment is an implantable vestibular prosthesis which would directly activate the vestibular nerve by electrical stimulation. This prosthetic treatment is tested in a new study by Christopher Phillips and his colleagues from the University of Washington in Seattle, USA. Their findings are published in the Springer journal Experimental Brain Research.

Meniere's disease is a disorder of the inner ear that can affect hearing and balance to varying degrees. The characteristic symptoms are episodes of vertigo, tinnitus, a feeling of pressure in the and hearing loss which tends to worsen as time goes on. Although there is medication which can help once an attack is underway, there is currently no long-term therapy which can resolve the disease completely.

Phillips and his colleagues have developed a vestibular prosthesis which delivers electrical stimulation to the fluid inside the semi-circular canals of the ear. In effect, the stimulation of the fluid makes the brain believe that the body is moving or swaying in a certain direction. This then causes a compensatory postural reflex to stabilize the posture thereby helping to restore balance.

For their study, this prosthesis was inserted into the ears of four subjects all suffering from long-term Meniere's disease and differing degrees of hearing loss which was resistant to other . After a full evaluation of each participant's vestibular function, their eye function was measured in response to electrical stimulation along with their postural response both with their eyes open and closed.

The researchers found that of the fluid in the semicircular canals of the affected ear did result in a change in posture, the direction of which was dependent on which ear was stimulated. However, each subject had different sway responses to the stimulation given. The authors believe this could be caused by small differences in the location of the electrode between subjects. Thus fine tuning and individual calibration for each electrode implant would be required for it to be effective.

Overall the results illustrate that this type of prosthesis may eventually be a possible treatment for balance issues caused by Meniere's disease. However, there are a large number of matters which would need resolving before it is ready for use. The lack of consistency in direction and magnitude of sway response would require further study to ensure that any prosthesis developed could give reliable results for different individuals.

The authors conclude: "Taken together, our findings support the feasibility of a vestibular for the control of balance and illustrate new challenges for the development of this technology. This study is a first step in that direction."

Explore further: Researchers find diminished balance in those with poor vision

More information: Phillips, C. et al. (2013). Postural responses to electrical stimulation of the vestibular end organs in human subjects. Experimental Brain Research; DOI 10.1007/s00221-013-3604-3

Related Stories

Researchers find diminished balance in those with poor vision

June 6, 2013
UC Davis Health System Eye Center research has found that visually impaired individuals and those with uncorrected refractive error—those who could benefit from glasses to achieve normal vision but don't wear glasses—have ...

Brain stimulation aims to speed up tinnitus treatment

June 12, 2013
(Medical Xpress)—A combination of brain stimulation and video games may be the key to speeding up treatment for tinnitus sufferers.

Tackling hearing loss

February 27, 2013
Some 16 per cent of European adults suffer from hearing loss that is severe enough to adversely affect their daily life. Hearing loss impacts on one's ability to communicate - to hear, process sound, and respond - which can ...

Study offers hope for sufferers of vertigo

October 5, 2012
We've known for a while that the vestibular system in the inner ear is responsible for helping us keep our balance. And while researchers have already developed a basic understanding of how the brain constructs our perceptions ...

Recommended for you

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.